A Multigrid Method for Helmholtz Transmission Eigenvalue Problems

In this paper, we analyze the convergence of a finite element method for the computation of transmission eigenvalues and corresponding eigenfunctions. Based on the obtained error estimate results, we propose a multigrid method to solve the Helmholtz transmission eigenvalue problem. This new method needs only linear computational work. Numerical results are provided to validate the efficiency of the proposed method.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Wenbin Chen,et al.  Error Estimates of the Finite Element Method for Interior Transmission Problems , 2013, J. Sci. Comput..

[3]  Jiguang Sun,et al.  A coupled BEM and FEM for the interior transmission problem in acoustics , 2011, J. Comput. Appl. Math..

[4]  Hehu Xie A type of multi-level correction scheme for eigenvalue problems by nonconforming finite element methods , 2015 .

[5]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[6]  Jiguang Sun Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..

[7]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[8]  A. Kirsch On the existence of transmission eigenvalues , 2009 .

[9]  Xuejun Zhang,et al.  Multilevel Schwarz Methods for the Biharmonic Dirichlet Problem , 1994, SIAM J. Sci. Comput..

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  D. Colton,et al.  Transmission eigenvalues and the nondestructive testing of dielectrics , 2008 .

[12]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[13]  H. Haddar,et al.  Transmission Eigenvalues in Inverse Scattering Theory , 2012 .

[14]  Jiguang Sun,et al.  Finite Element Methods for Maxwell's Transmission Eigenvalues , 2012, SIAM J. Sci. Comput..

[15]  D. Colton,et al.  The interior transmission problem , 2007 .

[16]  Jiguang Sun,et al.  Estimation of transmission eigenvalues and the index of refraction from Cauchy data , 2010 .

[17]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms for Eigenvalue Problems , 2002 .

[18]  Hehu Xie,et al.  A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods , 2015 .

[19]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[20]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[21]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[22]  Ping Wang,et al.  On the Monotonicity of (k;g,h)-graphs , 2002 .

[23]  F. Bogner,et al.  The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae , 1965 .

[24]  Xia Ji,et al.  Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.

[25]  D. Colton,et al.  The inverse electromagnetic scattering problem for anisotropic media , 2010 .

[26]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[27]  Jie Shen,et al.  A Spectral-Element Method for Transmission Eigenvalue Problems , 2013, J. Sci. Comput..

[28]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..