A Review on Realization Theory for Infinite-Dimensional Systems

We give an introduction to the realisation theory for infinite-dimensional systems. That is, we show that for any function $G$, analytic and bounded in the right half of the complex plane, there exists operators $A,B,C$ such that $G(s_1)-G(s_2) = (s_2-s_1) C(s_1 I-A)^{-1}(s_2 I-A)^{-1}B$. Here $A$ is the infinitesimal generator of a strongly continuous semigroup on a Hilbert space, and $B$ and $C$ are admissible input and output operators, respectively. Our results summarise and clarify the results as found in the literature, starting more than 40 years ago.

[1]  Hans Zwart,et al.  Properties of the Realization of Inner Functions , 2002, Math. Control. Signals Syst..

[2]  J. Leigh LINEAR SYSTEMS AND OPERATORS IN HILBERT SPACE , 1982 .

[3]  V. Peller Hankel Operators and Their Applications , 2003, IEEE Transactions on Automatic Control.

[4]  George Weiss,et al.  Admissibility of unbounded control operators , 1989 .

[5]  Yukata Yamamoto,et al.  Realization theory of infinite-dimensional linear systems. Part II , 1981, Mathematical systems theory.

[6]  R. Ober,et al.  Infinite-Dimensional Continuous-Time Linear Systems: Stabilityand Structure Analysis , 1996 .

[7]  J. William Helton,et al.  Systems with infinite dimensional state space: The Hilbert space approach , 1976 .

[8]  E. Kamen,et al.  REALIZATION THEORY OF INFINITE-DIMENSIONAL LINEAR SYSTEMS By YUTAKA YAMAMOTO , 2010 .

[9]  W. Rudin Real and complex analysis , 1968 .

[10]  R. Brockett,et al.  $H^2 $-Functions and Infinite-Dimensional Realization Theory , 1975 .

[11]  Yukata Yamamoto,et al.  Realization theory of infinite-dimensional linear systems. Part I , 2005, Mathematical systems theory.

[12]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[13]  Ruth F. Curtain,et al.  Well posedness of triples of operators (in the sense of linear systems theory) , 1989 .

[14]  Larry Gearhart,et al.  Spectral theory for contraction semigroups on Hilbert space , 1978 .

[15]  George Weiss,et al.  Regular linear systems with feedback , 1994, Math. Control. Signals Syst..

[16]  George Weiss,et al.  Admissible observation operators for linear semigroups , 1989 .

[17]  O. Staffans Well-Posed Linear Systems , 2005 .

[18]  George Weiss,et al.  The representation of regular linear systems on Hilbert spaces , 1989 .

[19]  Dietmar A. Salamon,et al.  Realization theory in Hilbert space , 1988, Mathematical systems theory.

[20]  R. Brockett,et al.  H2-functions and infinite dimensional realization theory , 1972, CDC 1972.

[21]  N. K. Nikol,et al.  Treatise on the shift operator , 1986 .

[22]  George Weiss,et al.  Transfer Functions of Regular Linear Systems. Part I: Characterizations of Regularity , 1994 .