Translesion Synthesis and Mutagenic Pathways in Escherichia coli Cells

[1]  Wei Yang,et al.  Structural Insight into Translesion Synthesis by DNA Pol II , 2009, Cell.

[2]  Jun Yin,et al.  Amino acid architecture that influences dNTP insertion efficiency in Y-family DNA polymerase V of E. coli. , 2009, Journal of molecular biology.

[3]  R. Woodgate,et al.  The active form of DNA polymerase V is UmuD′2C–RecA–ATP , 2009, Nature.

[4]  E. Loechler,et al.  Y-Family DNA polymerases may use two different dNTP shapes for insertion: a hypothesis and its implications. , 2009, Journal of molecular graphics & modelling.

[5]  Jingchuan Sun,et al.  Mechanism of Replication-Coupled DNA Interstrand Crosslink Repair , 2008, Cell.

[6]  Yong Jiang,et al.  Efficient and accurate bypass of N2-(1-carboxyethyl)-2′-deoxyguanosine by DinB DNA polymerase in vitro and in vivo , 2008, Proceedings of the National Academy of Sciences.

[7]  Kevin A. Fiala,et al.  Snapshots of a Y-family DNA polymerase in replication: substrate-induced conformational transitions and implications for fidelity of Dpo4. , 2008, Journal of molecular biology.

[8]  H. Maki,et al.  A Dynamic Polymerase Exchange with Escherichia coli DNA Polymerase IV Replacing DNA Polymerase III on the Sliding Clamp*♦ , 2008, Journal of Biological Chemistry.

[9]  Karl-Peter Hopfner,et al.  Bypass of DNA Lesions Generated During Anticancer Treatment with Cisplatin by DNA Polymerase η , 2007, Science.

[10]  R. Woodgate,et al.  What a difference a decade makes: Insights into translesion DNA synthesis , 2007, Proceedings of the National Academy of Sciences.

[11]  R. Fuchs,et al.  Interplay among replicative and specialized DNA polymerases determines failure or success of translesion synthesis pathways. , 2007, Journal of molecular biology.

[12]  D. Jerina,et al.  A structural gap in Dpo4 supports mutagenic bypass of a major benzo[a]pyrene dG adduct in DNA through template misalignment , 2007, Proceedings of the National Academy of Sciences.

[13]  K. Schlacher,et al.  Lessons from 50 years of SOS DNA-damage-induced mutagenesis , 2007, Nature Reviews Molecular Cell Biology.

[14]  R. Fuchs,et al.  Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot. , 2007, DNA repair.

[15]  Suse Broyde,et al.  A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. , 2007, Journal of the American Chemical Society.

[16]  P. McHugh,et al.  DNA interstrand cross-link repair in Saccharomyces cerevisiae. , 2007, FEMS microbiology reviews.

[17]  Robert E. Johnson,et al.  Human DNA Polymerase κ Encircles DNA: Implications for Mismatch Extension and Lesion Bypass , 2007 .

[18]  Susan E. Cohen,et al.  Y-family DNA polymerases in Escherichia coli. , 2007, Trends in microbiology.

[19]  R. Fuchs,et al.  RecFOR proteins are essential for Pol V‐mediated translesion synthesis and mutagenesis , 2006, The EMBO journal.

[20]  R. Heller,et al.  Replisome assembly and the direct restart of stalled replication forks , 2006, Nature Reviews Molecular Cell Biology.

[21]  T. Nohmi Environmental stress and lesion-bypass DNA polymerases. , 2006, Annual review of microbiology.

[22]  E. Loechler,et al.  Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs. , 2006, Journal of molecular graphics & modelling.

[23]  R. Woodgate,et al.  RecA acts in trans to allow replication of damaged DNA by DNA polymerase V , 2006, Nature.

[24]  M. O’Donnell,et al.  DNA replication: keep moving and don't mind the gap. , 2006, Molecular cell.

[25]  S. Sarkar,et al.  DNA Interstrand Cross-Link Repair in the Cell Cycle: A Critical Role for Polymerase ζ in G1 Phase , 2006, Cell cycle.

[26]  Jun Yin,et al.  Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli. , 2006, DNA repair.

[27]  S. Sarkar,et al.  DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase ζ , 2006, The EMBO journal.

[28]  I. Matic,et al.  Interplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Broyde,et al.  A new anti conformation for N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF-dG) allows Watson–Crick pairing in the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) , 2006, Nucleic acids research.

[30]  J. Essigmann,et al.  A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates , 2006, Nature.

[31]  Yuan Cheng,et al.  Stepwise Translocation of Dpo4 Polymerase during Error-Free Bypass of an oxoG Lesion , 2006, PLoS biology.

[32]  A. Nagalingam,et al.  Mutagenesis studies with four stereoisomeric N2-dG benzo[a]pyrene adducts in the identical 5'-CGC sequence used in NMR studies: G->T mutations dominate in each case. , 2005, Mutagenesis.

[33]  R. Woodgate,et al.  Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis , 2005, The EMBO journal.

[34]  Robert E. Johnson,et al.  Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. , 2005, Annual review of biochemistry.

[35]  Andreas Luch,et al.  Nature and nurture – lessons from chemical carcinogenesis , 2005, Nature Reviews Cancer.

[36]  Satya Prakash,et al.  Replication by human DNA polymerase-ι occurs by Hoogsteen base-pairing , 2004, Nature.

[37]  S. Doublié,et al.  Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site , 2004, The EMBO journal.

[38]  Jun Yin,et al.  A role for DNA polymerase V in G --> T mutations from the major benzo[a]pyrene N2-dG adduct when studied in a 5'-TGT sequence in E. coli. , 2004, DNA repair.

[39]  Kevin A. Fiala,et al.  Mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV. , 2004, Biochemistry.

[40]  Laurence H Pearl,et al.  Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β‐clamp , 2003, The EMBO journal.

[41]  Zhongwen Xie,et al.  Mutagenesis of benzo[a]pyrene diol epoxide in yeast: Requirement for DNA polymerase ζ and involvement of DNA polymerase η , 2003 .

[42]  R. Woodgate,et al.  Replication of a cis–syn thymine dimer at atomic resolution , 2003, Nature.

[43]  Jeffrey D. Stumpf,et al.  Error-Prone Polymerase, DNA Polymerase IV, Is Responsible for Transient Hypermutation during Adaptive Mutation in Escherichia coli , 2003, Journal of bacteriology.

[44]  P. Hainaut,et al.  On the origin of G --> T transversions in lung cancer. , 2003, Mutation research.

[45]  Wei Yang Damage repair DNA polymerases Y. , 2003, Current opinion in structural biology.

[46]  N. Tretyakova,et al.  Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers , 2002, Oncogene.

[47]  M. O’Donnell,et al.  Fidelity of Escherichia coli DNA Polymerase IV , 2002, The Journal of Biological Chemistry.

[48]  J. Wagner,et al.  Pivotal role of the β-clamp in translesion DNA synthesis and mutagenesis in E. coli cells , 2002 .

[49]  Bethany Yeiser,et al.  SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  C. Harris,et al.  The IARC TP53 database: New online mutation analysis and recommendations to users , 2002, Human mutation.

[51]  B. Strauss The "A" rule revisited: polymerases as determinants of mutational specificity. , 2002, DNA repair.

[52]  D. Jerina,et al.  Efficiency and Accuracy of SOS-induced DNA Polymerases Replicating Benzo[a]pyrene-7,8-diol 9,10-Epoxide A and G Adducts* , 2002, The Journal of Biological Chemistry.

[53]  L. Prakash,et al.  Yeast DNA Polymerase η Utilizes an Induced-Fit Mechanism of Nucleotide Incorporation , 2001, Cell.

[54]  R. Woodgate,et al.  Crystal Structure of a Y-Family DNA Polymerase in Action A Mechanism for Error-Prone and Lesion-Bypass Replication , 2001, Cell.

[55]  M. Yamada,et al.  Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli , 2001, Molecular Genetics and Genomics.

[56]  T. Steitz,et al.  Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. , 2001, Molecular cell.

[57]  Robert E. Johnson,et al.  Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. , 2001, Molecular cell.

[58]  T. Kunkel,et al.  The Y-family of DNA polymerases. , 2001, Molecular cell.

[59]  J. Wagner,et al.  All three SOS‐inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis , 2000, The EMBO journal.

[60]  Fenghua Yuan,et al.  Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro , 2000 .

[61]  R. Fuchs,et al.  The processing of a Benzo(a)pyrene adduct into a frameshift or a base substitution mutation requires a different set of genes in Escherichia coli , 2000, Molecular microbiology.

[62]  S. Hussain,et al.  p53 Tumor Suppressor Gene: At the Crossroads of Molecular Carcinogenesis, Molecular Epidemiology, and Human Risk Assessment , 2000, Annals of the New York Academy of Sciences.

[63]  Satya Prakash,et al.  Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions , 2000, Nature.

[64]  F. Hanaoka,et al.  Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. , 2000, Genes & development.

[65]  M. Tang,et al.  Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. , 2000, Journal of the National Cancer Institute.

[66]  Roger Woodgate,et al.  Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis , 2000, Nature.

[67]  Robert E. Johnson,et al.  The human DINB1 gene encodes the DNA polymerase Poltheta. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Robert E. Johnson,et al.  Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase eta. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Satya Prakash,et al.  Fidelity of Human DNA Polymerase η* , 2000, The Journal of Biological Chemistry.

[70]  Fenghua Yuan,et al.  Specificity of DNA Lesion Bypass by the Yeast DNA Polymerase η* , 2000, The Journal of Biological Chemistry.

[71]  L. Marnett,et al.  Oxyradicals and DNA damage. , 2000, Carcinogenesis.

[72]  Robert E. Johnson,et al.  Fidelity and Processivity of Saccharomyces cerevisiae DNA Polymerase η* , 1999, The Journal of Biological Chemistry.

[73]  D. Jerina,et al.  Characterization of the mutational profile of (+)-7R,8S-dihydroxy-9S, 10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene at the hypoxanthine (guanine) phosphoribosyltransferase gene in repair-deficient Chinese hamster V-H1 cells. , 1999, Carcinogenesis.

[74]  G. Walker,et al.  A model for a umuDC-dependent prokaryotic DNA damage checkpoint. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Robert E. Johnson,et al.  hRAD30 mutations in the variant form of xeroderma pigmentosum. , 1999, Science.

[76]  Chikahide Masutani,et al.  The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η , 1999, Nature.

[77]  M. Tang,et al.  Use of UvrABC nuclease to quantify benzo[a]pyrene diol epoxide-DNA adduct formation at methylated versus unmethylated CpG sites in the p53 gene. , 1999, Carcinogenesis.

[78]  Robert E. Johnson,et al.  Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. , 1999, Science.

[79]  M. Tang,et al.  Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers , 1998, Oncogene.

[80]  M. Goodman,et al.  The Escherichia coli polB Locus Is Identical to dinA, the Structural Gene for DNA Polymerase II , 1997, The Journal of Biological Chemistry.

[81]  M. Berardini,et al.  Evidence for a recombination-independent pathway for the repair of DNA interstrand cross-links based on a site-specific study with nitrogen mustard. , 1997, Biochemistry.

[82]  D Hoffmann,et al.  The changing cigarette, 1950-1995. , 1997, Journal of toxicology and environmental health.

[83]  D. Patel,et al.  NMR solution structures of stereoisometric covalent polycyclic aromatic carcinogen-DNA adduct: principles, patterns, and diversity. , 1997, Chemical research in toxicology.

[84]  M. Tang,et al.  Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53 , 1996, Science.

[85]  N. Dumaz,et al.  The specificity of p53 mutation spectra in sunlight induced human cancers. , 1995, Journal of photochemistry and photobiology. B, Biology.

[86]  D. Hsieh,et al.  Recent aflatoxin exposure and mutation at codon 249 of the human p53 gene: lack of association. , 1995, Food additives and contaminants.

[87]  M. Lieb,et al.  Very short patch repair of T:G mismatches in vivo: importance of context and accessory proteins , 1995, Journal of bacteriology.

[88]  P. Modrich,et al.  Mismatch repair, genetic stability, and cancer. , 1994, Science.

[89]  R. Neft,et al.  Genetic toxicity of 2-acetylaminofluorene, 2-aminofluorene and some of their metabolites and model metabolites. , 1994, Mutation research.

[90]  C. Harris,et al.  Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. , 1994, Cancer research.

[91]  M. Fukayama,et al.  Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. , 1994, Cancer research.

[92]  T. Soussi,et al.  Can we predict solar ultraviolet radiation as the causal event in human tumours by analysing the mutation spectra of the p53 gene? , 1994, Mutation research.

[93]  K. McEntee,et al.  Crystallization of DNA polymerase II from Escherichia coli. , 1994, Journal of molecular biology.

[94]  Y. Takeshima,et al.  p53 mutations in lung cancers from non-smoking atomic-bomb survivors , 1993, The Lancet.

[95]  E. Loechler,et al.  Mutagenesis by the (+)-anti-diol epoxide of benzo[a]pyrene: what controls mutagenic specificity? , 1993, Biochemistry.

[96]  K. Kinzler,et al.  Carcinogens leave fingerprints , 1992, Nature.

[97]  J. Simon,et al.  A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[98]  C. Papanicolaou,et al.  An in vitro approach to identifying specificity determinants of mutagenesis mediated by DNA misalignments. , 1991, Journal of molecular biology.

[99]  R. Woodgate,et al.  Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage , 1991, Molecular and General Genetics MGG.

[100]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[101]  T. Kunkel,et al.  Mutagenesis by transient misalignment. , 1988, The Journal of biological chemistry.

[102]  A. Dipple Polycyclic Aromatic Hydrocarbon Carcinogenesis: An Introduction , 1985 .

[103]  A. Conney,et al.  Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. , 1982, Cancer research.

[104]  W. Haseltine,et al.  UV-induced mutation hotspots occur at DNA damage hotspots , 1982, Nature.

[105]  Jeffrey H. Miller,et al.  Mutagenic deamination of cytosine residues in DNA , 1980, Nature.

[106]  J. Cleaver Defective Repair Replication of DNA in Xeroderma Pigmentosum , 1968, Nature.

[107]  L. Theriot,et al.  Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. , 1966, Genetics.

[108]  P. van de Putte,et al.  The location of genes controlling radiation sensitivity in Escherichia coli. , 1965, Mutation research.

[109]  A. Rörsch,et al.  The range of action of genes controlling radiation sensitivity in Escherichia coli. , 1965, Mutation research.

[110]  A. Kornberg Biologic synthesis of deoxyribonucleic acid. , 1960, Science.

[111]  T. Kunkel,et al.  The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases , 2008, Cell Research.

[112]  E. Loechler,et al.  Molecular modeling benzo[a]pyrene N2-dG adducts in the two overlapping active sites of the Y-family DNA polymerase Dpo4. , 2007, Journal of molecular graphics & modelling.

[113]  Gabriel Waksman,et al.  Structure and mechanism of DNA polymerases. , 2005, Advances in protein chemistry.

[114]  T. Kunkel,et al.  Functions of DNA polymerases. , 2004, Advances in protein chemistry.

[115]  G. Pfeifer,et al.  Simulated sunlight and benzo[a]pyrene diol epoxide induced mutagenesis in the human p53 gene evaluated by the yeast functional assay: lack of correspondence to tumor mutation spectra. , 2003, Carcinogenesis.

[116]  M. Goodman Error-prone repair DNA polymerases in prokaryotes and eukaryotes. , 2002, Annual review of biochemistry.

[117]  G. Pfeifer,et al.  Formation and repair of DNA lesions in the p53 gene: Relation to cancer mutations? , 1998, Environmental and molecular mutagenesis.

[118]  E. Dogliotti,et al.  Genetic alterations in skin cancer. , 1996, Annali dell'Istituto superiore di sanita.

[119]  Yusuke Nakamura,et al.  Mutations of the APC adenomatous polyposis coli) gene , 1993, Human mutation.

[120]  D. Eaton,et al.  8 – Mechanisms by Which Aflatoxins and Other Bulky Carcinogens Induce Mutations , 1993 .

[121]  J. Miller Mutational specificity in bacteria. , 1983, Annual review of genetics.