Energy system transformations for limiting end-of-century warming to below 1.5 °C

[1]  Joeri Rogelj,et al.  Global warming under old and new scenarios using IPCC climate sensitivity range estimates , 2012 .

[2]  Charlie Wilson,et al.  Diagnostic indicators for integrated assessment models of climate policy , 2015 .

[3]  D. McCollum,et al.  Probabilistic cost estimates for climate change mitigation , 2013, Nature.

[4]  Pierre Friedlingstein,et al.  Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways , 2013, Journal of Climate.

[5]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[6]  Massimo Tavoni,et al.  Modeling meets science and technology: an introduction to a special issue on negative emissions , 2013, Climatic Change.

[7]  D. McCollum,et al.  Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants , 2015 .

[8]  Elmar Kriegler,et al.  Harmonization vs. fragmentation: overview of climate policy scenarios in EMF27 , 2014, Climatic Change.

[9]  S. Raper,et al.  Is it possible to limit global warming to no more than 1.5°C? , 2010, Climatic Change.

[10]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[11]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[12]  R. Knutti,et al.  Implications of potentially lower climate sensitivity on climate projections and policy , 2014 .

[13]  Elmar Kriegler,et al.  Getting from here to there – energy technology transformation pathways in the EMF27 scenarios , 2014, Climatic Change.

[14]  L. Clarke,et al.  Assessing Transformation Pathways , 2014 .

[15]  A. Weaver,et al.  Setting cumulative emissions targets to reduce the risk of dangerous climate change , 2008, Proceedings of the National Academy of Sciences.

[16]  Kenichi Wada,et al.  A short note on integrated assessment modeling approaches: Rejoinder to the review of "Making or breaking climate targets - The AMPERE study on staged accession scenarios for climate policy" , 2015 .

[17]  E. Stehfest,et al.  RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C , 2011 .

[18]  Keywan Riahi,et al.  Emission pathways consistent with a 2[thinsp][deg]C global temperature limit , 2011 .

[19]  D. Vuuren,et al.  Mid- and long-term climate projections for fragmented and delayed-action scenarios , 2015 .

[20]  T. Stocker,et al.  SBSTA-IPCC Special Event Climate Change 2013: The Physical Science Basis , 2013 .

[21]  Keywan Riahi,et al.  Chapter 17 - Energy Pathways for Sustainable Development , 2012 .

[22]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[23]  Elmar Kriegler,et al.  Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options , 2014, Climatic Change.

[24]  S. Solomon,et al.  Irreversible climate change due to carbon dioxide emissions , 2009, Proceedings of the National Academy of Sciences.

[25]  Pierre Friedlingstein,et al.  Persistence of climate changes due to a range of greenhouse gases , 2010, Proceedings of the National Academy of Sciences.

[26]  John P. Weyant,et al.  Overview of EMF-21: Multigas Mitigation and Climate Policy , 2006 .

[27]  Jessica Strefler,et al.  Description of the REMIND Model (Version 1.5) , 2013 .

[28]  Elmar Kriegler,et al.  Economic mitigation challenges: how further delay closes the door for achieving climate targets , 2013 .

[29]  Corinne Le Quéré,et al.  Persistent growth of CO2 emissions and implications for reaching climate targets , 2014 .

[30]  Jason Lowe,et al.  The Reversibility of Sea Level Rise , 2013 .

[31]  Elmar Kriegler,et al.  The role of Asia in mitigating climate change: Results from the Asia modeling exercise , 2012 .

[32]  Jessica Strefler,et al.  Description of the REMIND Model (Version 1.6) , 2015 .

[33]  Nebojsa Nakicenovic,et al.  Avoiding dangerous climate change , 2006 .

[34]  Niclas Mattsson,et al.  Meeting global temperature targets—the role of bioenergy with carbon capture and storage , 2013 .

[35]  John P. Weyant,et al.  The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies , 2014, Climatic Change.

[36]  K. Calvin,et al.  Implications of weak near-term climate policies on long-term mitigation pathways , 2015, Climatic Change.

[37]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[38]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[39]  Global Energy Assessment Writing Team Global Energy Assessment: Toward a Sustainable Future , 2012 .

[40]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[41]  P. Kyle,et al.  Implications of uncertain future fossil energy resources on bioenergy use and terrestrial carbon emissions , 2016, Climatic Change.

[42]  Brian C. O'Neill,et al.  2020 emissions levels required to limit warming to below 2 °C , 2013 .

[43]  Atul K. Jain,et al.  The global carbon budget 1959-2011 , 2012 .

[44]  N. Nakicenovic,et al.  Scenarios of long-term socio-economic and environmental development under climate stabilization , 2007 .

[45]  Sha Fu,et al.  Long-Term Transport Energy Demand and Climate Policy: Alternative Visions on Transport Decarbonization in Energy Economy Models , 2013 .

[46]  Reto Knutti,et al.  Early onset of significant local warming in low latitude countries , 2011 .

[47]  G. Luderer,et al.  Global fossil energy markets and climate change mitigation – an analysis with REMIND , 2012, Climatic Change.

[48]  Corinne Le Quéré,et al.  Betting on negative emissions , 2014 .

[49]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[50]  L. Clarke,et al.  International climate policy architectures: Overview of the EMF 22 International Scenarios , 2009 .

[51]  Francis W. Zwiers,et al.  Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties , 2010 .

[52]  Tom M. L. Wigley,et al.  Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications , 2011 .

[53]  H. Matthews,et al.  Future CO2 Emissions and Climate Change from Existing Energy Infrastructure , 2010, Science.

[54]  Keywan Riahi,et al.  WHAT DOES THE 2 C TARGET IMPLY FOR A GLOBAL CLIMATE AGREEMENT IN 2020? THE LIMITS STUDY ON DURBAN PLATFORM SCENARIOS , 2013 .

[55]  Jan Christoph Steckel,et al.  The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison , 2012, Climatic Change.

[56]  Enrica De Cian,et al.  The influence of economic growth, population, and fossil fuel scarcity on energy investments , 2013, Climatic Change.

[57]  Socrates Kypreos,et al.  The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs , 2010 .

[58]  Joeri Rogelj,et al.  Copenhagen Accord pledges are paltry , 2010, Nature.

[59]  Kenichi Wada,et al.  Technological Forecasting & Social Change Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals , 2014 .