Foundations of Precomputed Radiance Transfer

Precomputed Radiance Transfer is a joint name for a class of methods in computer graphics. The aim of these methods is fast rendering of realistic images of virtual scenes under dynamically changing but constrained lighting conditions. The techniques differ from the usual methods of real-time computer graphics in that they also support indirect lighting and non-pointlike light sources. The basic idea behind these methods is to parameterize the distribution of emitted light by a low-dimensional linear space, and to precompute response functions on the scene for each degree-of-freedom in the emission space. Rendering an image of the scene under dynamically changing illumination then proceeds by taking properly weighed sums of the precomputed response functions. This yields interactive and even real-time performance. This thesis presents a mathematical framework for methods of precomputed radiance transfer. Much of the previously published work on the subject may be seen as a special case of the presented framework. Necessary background in both mathematics and realistic image synthesis is included. äitini muistolle Acknowledgments The author thanks Timo Aila for his guidance, discussions, criticism and proofreading; professor Lauri Savioja for support, criticism, and creating a good working spirit; Jan Kautz for discussions and collaboration that led to some of the work reviewed in this thesis; Jussi Räsänen and Janne Kontkanen for discussions and proofreading; Remedy Entertainment, Ltd., for offering an inspiring working environment where the author's interest to the subject was born. Brand and product names appearing in this thesis are trademarks or registered trademarks of their respective holders.

[1]  Jaakko Lehtinen,et al.  Hemispherical Rasterization for Self-Shadowing of Dynamic Objects , 2004, Rendering Techniques.

[2]  Jan Kautz,et al.  Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics , 2002, Rendering Techniques.

[3]  Pat Hanrahan,et al.  A signal-processing framework for inverse rendering , 2001, SIGGRAPH.

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  Holly Rushmeier,et al.  Realistic image synthesis for scenes with radiatively participating media , 1988 .

[6]  Andreas Kolb,et al.  Homomorphic factorization of BRDF-based lighting computation , 2002, ACM Trans. Graph..

[7]  P. Heckbert Simulating Global Illumination Using Adaptive Meshing , 1991 .

[8]  Pat Hanrahan,et al.  Triple product wavelet integrals for all-frequency relighting , 2004, ACM Trans. Graph..

[9]  Nicolas Holzschuch,et al.  Combining Higher-Order Wavelets and Discontinuity meshing: A Compact Representation for Radiosity , 2004, Rendering Techniques.

[10]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[11]  David Salesin,et al.  An importance-driven radiosity algorithm , 1992, SIGGRAPH.

[12]  Jan Kautz,et al.  Approximation of Glossy Reflection with Prefiltered Environment Maps , 2000, Graphics Interface.

[13]  Pieter Peers,et al.  Relighting with 4D incident light fields , 2003, ACM Trans. Graph..

[14]  祐介 日和崎 Stephane Mallat, "A Wavelet Tour of Signal Processing (2nd edition)," Academic Press, 1999(私のすすめるこの一冊,コーヒーブレーク) , 2006 .

[15]  Donald P. Greenberg,et al.  The Irradiance Volume , 1998, IEEE Computer Graphics and Applications.

[16]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[17]  Holly E. Rushmeier,et al.  A progressive multi-pass method for global illumination , 1991, SIGGRAPH.

[18]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[19]  James Arvo,et al.  Particle transport and image synthesis , 1990, SIGGRAPH.

[20]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[21]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[22]  Yves D. Willems,et al.  A Theoretical Framework for Physically Based Rendering , 1994, Comput. Graph. Forum.

[23]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[24]  Eero P. Simoncelli,et al.  Efficient Linear Re-rendering for Interactive Lighting Design , 1997 .

[25]  B. Wendroff Theoretical Numerical Analysis , 1966 .

[26]  Harry Shum,et al.  Eurographics Symposium on Rendering (2004) All-frequency Precomputed Radiance Transfer for Glossy Objects , 2022 .

[27]  Franklin C. Crow,et al.  The aliasing problem in computer-generated shaded images , 1977, Commun. ACM.

[28]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[29]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[30]  Claude Puech,et al.  A general two-pass method integrating specular and diffuse reflection , 1989, SIGGRAPH '89.

[31]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[32]  J. Dalley,et al.  The Computer Game , 1986 .

[33]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[34]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[35]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, SIGGRAPH.

[36]  Alexander B. Yakovlev,et al.  Introductory Functional Analysis , 2002 .

[37]  Jaakko Lehtinen,et al.  Matrix radiance transfer , 2003, I3D '03.

[38]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[39]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[40]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[41]  Stig Larsson,et al.  Partial differential equations with numerical methods , 2003, Texts in applied mathematics.

[42]  Pat Hanrahan,et al.  Frequency space environment map rendering , 2002, SIGGRAPH.

[43]  A. James Stewart,et al.  Fast computation of shadow boundaries using spatial coherence and backprojections , 1994, SIGGRAPH.

[44]  Harold R. Zatz Galerkin radiosity: a higher order solution method for global illumination , 1993, SIGGRAPH.

[45]  Julie Dorsey,et al.  Effic ient Re-rendering of Naturally Illuminated Environments , 1994 .

[46]  Harry Shum,et al.  Bi-scale radiance transfer , 2003, ACM Trans. Graph..

[47]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[48]  David Salesin,et al.  Global illumination of glossy environments using wavelets and importance , 1996, TOGS.

[49]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[50]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[51]  Donald P. Greenberg,et al.  A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods , 1987, SIGGRAPH.

[52]  Frédo Durand,et al.  Non-linear kernel-based precomputed light transport , 2004, SIGGRAPH '04.

[53]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[54]  George Drettakis,et al.  A fast shadow algorithm for area light sources using backprojection , 1994, SIGGRAPH.

[55]  R. Kanwal Linear Integral Equations , 1925, Nature.

[56]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[57]  Franklin C. Crow,et al.  Shadow algorithms for computer graphics , 1977, SIGGRAPH.

[58]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[59]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[60]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[61]  Rui Wang,et al.  Eurographics Symposium on Rendering (2004) All-frequency Relighting of Non-diffuse Objects Using Separable Brdf Approximation , 2022 .

[62]  Doug L. James,et al.  Precomputing interactive dynamic deformable scenes , 2003, ACM Trans. Graph..

[63]  Peter Shirley,et al.  Steerable illumination textures , 2002, TOGS.

[64]  Nelson L. Max,et al.  Radiosity algorithms using higher order finite element methods , 1993, SIGGRAPH.

[65]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[66]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[67]  Frederick P. Brooks,et al.  Towards image realism with interactive update rates in complex virtual building environments , 1990, I3D '90.

[68]  Arnauld Lamorlette,et al.  An approximate global illumination system for computer generated films , 2004, ACM Trans. Graph..

[69]  Kazufumi Kaneda,et al.  A Quick Rendering Method Using Basis Functions for Interactive Lighting Design , 1995, Comput. Graph. Forum.

[70]  Donald P. Greenberg,et al.  Design and simulation of opera lighting and projection effects , 1991, SIGGRAPH.

[71]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[72]  Donald P. Greenberg,et al.  An Efficient Radiosity Approach for Realistic Image Synthesis , 1986, IEEE Computer Graphics and Applications.

[73]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[74]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[75]  Paul S. Heckbert,et al.  Hierarchical radiosity with multiresolution meshes , 2000 .