The ABC-F protein EttA gates ribosome entry into the translation elongation cycle

[1]  Frederick C. Neidhardt,et al.  Escherichia coli and Salmonella :cellular and molecular biology , 2016 .

[2]  J. Frank,et al.  EttA regulates translation by binding to the ribosomal E site and restricting ribosome-tRNA dynamics , 2014, Nature Structural &Molecular Biology.

[3]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[4]  N. Woychik,et al.  Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site , 2013, Proceedings of the National Academy of Sciences.

[5]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[6]  P. Uetz,et al.  RsfA (YbeB) Proteins Are Conserved Ribosomal Silencing Factors , 2012, PLoS genetics.

[7]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[8]  Thomas A Steitz,et al.  How Hibernation Factors RMF, HPF, and YfiA Turn Off Protein Synthesis , 2012, Science.

[9]  Stephan Wickles,et al.  Structural basis of highly conserved ribosome recycling in eukaryotes and archaea , 2012, Nature.

[10]  M. Inouye,et al.  Toxin-antitoxin systems in bacteria and archaea. , 2011, Annual review of genetics.

[11]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[12]  Jonathan E. Bronson,et al.  Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis , 2011, Nature Structural &Molecular Biology.

[13]  Jue Chen,et al.  Crystal Structure of the Maltose Transporter in a Pretranslocation Intermediate State , 2011, Science.

[14]  A. Emili,et al.  Ribosome-Dependent ATPase Interacts with Conserved Membrane Protein in Escherichia coli to Modulate Protein Synthesis and Oxidative Phosphorylation , 2011, PloS one.

[15]  J. Söding,et al.  The Mre11:Rad50 Structure Shows an ATP-Dependent Molecular Clamp in DNA Double-Strand Break Repair , 2011, Cell.

[16]  R. Tampé,et al.  Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1 , 2011, Proceedings of the National Academy of Sciences.

[17]  E. Nowak,et al.  Structure of UvrA nucleotide excision repair protein in complex with modified DNA , 2011, Nature Structural &Molecular Biology.

[18]  J. Lorsch,et al.  Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP , 2010, Proceedings of the National Academy of Sciences.

[19]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[20]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[21]  R. Ficner,et al.  The iron–sulphur protein RNase L inhibitor functions in translation termination , 2010, EMBO reports.

[22]  M. Hentze,et al.  The role of ABCE1 in eukaryotic posttermination ribosomal recycling. , 2010, Molecular cell.

[23]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[24]  Jake M. Hofman,et al.  Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation , 2009, Proceedings of the National Academy of Sciences.

[25]  Y. Lam,et al.  ABC50 Promotes Translation Initiation in Mammalian Cells* , 2009, The Journal of Biological Chemistry.

[26]  J. Riordan,et al.  Relationship between nucleotide binding and ion channel gating in cystic fibrosis transmembrane conductance regulator , 2009, The Journal of physiology.

[27]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[28]  Michael C. Jewett,et al.  Continued Protein Synthesis at Low [ATP] and [GTP] Enables Cell Adaptation during Energy Limitation , 2008, Journal of bacteriology.

[29]  E. Dassa,et al.  Deletion of the Escherichia coli uup gene encoding a protein of the ATP binding cassette superfamily affects bacterial competitiveness. , 2008, Research in microbiology.

[30]  Jue Chen,et al.  Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems , 2008, Microbiology and Molecular Biology Reviews.

[31]  R. L. Gonzalez,et al.  Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. , 2008, Molecular cell.

[32]  K. Hopfner,et al.  X-ray Structure of the Complete ABC Enzyme ABCE1 from Pyrococcus abyssi* , 2008, Journal of Biological Chemistry.

[33]  O. Uhlenbeck,et al.  [3'-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation. , 2008, Methods.

[34]  H. Rubin,et al.  Characterization of Nucleotide Pools as a Function of Physiological State in Escherichia coli , 2007, Journal of bacteriology.

[35]  Thomas Becker,et al.  Structure of eEF3 and the mechanism of transfer RNA release from the E-site , 2006, Nature.

[36]  K. Gerdes,et al.  Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids , 2006, Molecular microbiology.

[37]  L. Gierasch,et al.  Disorder breathes life into a DEAD motor , 2006, Nature Structural &Molecular Biology.

[38]  I. Callebaut,et al.  ATP Hydrolysis Is Essential for the Function of the Uup ATP-binding Cassette ATPase in Precise Excision of Transposons* , 2006, Journal of Biological Chemistry.

[39]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[40]  A. Hinnebusch,et al.  The Novel ATP-Binding Cassette Protein ARB1 Is a Shuttling Factor That Stimulates 40S and 60S Ribosome Biogenesis , 2005, Molecular and Cellular Biology.

[41]  Lutz Schmitt,et al.  H662 is the linchpin of ATP hydrolysis in the nucleotide‐binding domain of the ABC transporter HlyB , 2005, The EMBO journal.

[42]  A. Hinnebusch,et al.  Polyribosome Binding by GCN1 Is Required for Full Activation of Eukaryotic Translation Initiation Factor 2α Kinase GCN2 during Amino Acid Starvation* , 2005, Journal of Biological Chemistry.

[43]  Y. Ivanov,et al.  70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. , 2005, European journal of biochemistry.

[44]  Paola Vergani,et al.  CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains , 2005, Nature.

[45]  Steven Chu,et al.  tRNA dynamics on the ribosome during translation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Rachel Green,et al.  The Active Site of the Ribosome Is Composed of Two Layers of Conserved Nucleotides with Distinct Roles in Peptide Bond Formation and Peptide Release , 2004, Cell.

[47]  I. Kerr Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. , 2004, Biochemical and biophysical research communications.

[48]  John F Hunt,et al.  ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. , 2002, Molecular cell.

[49]  O. Uhlenbeck,et al.  Modulation of tRNAAla identity by inorganic pyrophosphatase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[51]  T. Terwilliger Maximum-likelihood density modification using pattern recognition of structural motifs , 2001, Acta crystallographica. Section D, Biological crystallography.

[52]  Takuya Ueda,et al.  Cell-free translation reconstituted with purified components , 2001, Nature Biotechnology.

[53]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[54]  J. Hunt,et al.  Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. , 2001, Structure.

[55]  K. Diederichs,et al.  Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis , 2000, The EMBO journal.

[56]  C. Proud,et al.  ABC50 Interacts with Eukaryotic Initiation Factor 2 and Associates with the Ribosome in an ATP-dependent Manner* , 2000, The Journal of Biological Chemistry.

[57]  John A. Tainer,et al.  Structural Biology of Rad50 ATPase ATP-Driven Conformational Control in DNA Double-Strand Break Repair and the ABC-ATPase Superfamily , 2000, Cell.

[58]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  C. Mathews,et al.  Metabolic Functions of Microbial Nucleoside Diphosphate Kinases , 2000, Journal of bioenergetics and biomembranes.

[60]  H. Aoki,et al.  Identification of a ribosomal ATPase in Escherichia coli cells. , 1999, Biochimie.

[61]  Holland Ib,et al.  ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. , 1999 .

[62]  A. M. George,et al.  Subunit interactions in ABC transporters: towards a functional architecture. , 1999, FEMS microbiology letters.

[63]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[64]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[65]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[66]  C. Turnbough,et al.  Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. , 1997, Science.

[67]  M. Inouye,et al.  Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[68]  C. R. Vázquez de Aldana,et al.  GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF‐2 alpha kinase GCN2 in amino acid‐starved cells. , 1995, The EMBO journal.

[69]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[70]  N. Fujita,et al.  Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase‐ and growth rate‐dependent control. , 1993, The EMBO journal.

[71]  S Letovsky,et al.  Genome-related datasets within the E. coli Genetic Stock Center database. , 1992, Nucleic acids research.

[72]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[73]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[74]  A. Kamath,et al.  Role of yeast elongation factor 3 in the elongation cycle. , 1989, Journal of Biological Chemistry.

[75]  M. Syvanen,et al.  New class of mutations in Escherichia coli (uup) that affect precise excision of insertion elements and bacteriophage Mu growth , 1983, Journal of bacteriology.

[76]  D. E. Atkinson,et al.  Adenylate energy charge in Escherichia coli CR341T28 and properties of heat-sensitive adenylate kinase , 1981, Journal of bacteriology.

[77]  G. M. Walton,et al.  Regulation of ternary (Met-tRNAf - GTP - eukaryotic initiation factor 2) protein synthesis initiation complex formation by the adenylate energy charge. , 1976, Biochimica et biophysica acta.

[78]  D. E. Atkinson,et al.  Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli. , 1975, The Journal of biological chemistry.

[79]  M. Inouye,et al.  Specific Biosynthesis of an Envelope Protein of Escherichia coli , 1973, Nature.

[80]  D. E. Atkinson,et al.  Adenylate Energy Charge in Escherichia coli During Growth and Starvation , 1971, Journal of bacteriology.

[81]  R. Kohler,,et al.  Polysomes Extracted from Escherichia coli by Freeze-Thaw-Lysozyme Lysis , 1966, Science.

[82]  Margaret M. Elvekrog,et al.  A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesis. , 2010, Methods in enzymology.

[83]  Gerard J Kleywegt,et al.  Quality control and validation. , 2007, Methods in molecular biology.

[84]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[85]  P. Levin 6 Light microscopy techniques for bacterial cell biology , 2002 .

[86]  I. Holland,et al.  ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. , 1999, Journal of molecular biology.

[87]  G. Unden,et al.  Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. , 1998, European journal of biochemistry.

[88]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[89]  M. Hofnung A short course in bacterial genetics and a laboratory manual and handbook for Escherichia coli and related bacteria , 1993 .

[90]  Jeffrey H. Miller A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Rela , 1992 .

[91]  G. M. Walton,et al.  Nucleotide regulation of protein synthesis. , 1979, Methods in enzymology.

[92]  L Skogerson,et al.  A ribosome-dependent GTPase from yeast distinct from elongation factor 2. , 1976, Proceedings of the National Academy of Sciences of the United States of America.