Fine structure in the excitonic emission of InAs/ GaAs quantum dot molecules

The exciton fine structure in self-assembled coupled quantum dots with barriers of varying widths is studied in detail. For narrow barriers we find doublet splittings of the molecule ground state exciton in magnetic field, while for wide barriers in some cases a multiplet of emission lines is observed. Pronounced anticrossings occur in the field dispersion of such a multiplet with details depending on the particular molecule geometry. Strong variations of the fine structure including avoided crossings are observed also for the excited states that arise from the coupling-induced splitting of the quantum dot s-shell excitons. Values for the exciton diamagnetic shifts and spin splittings as functions of barrier width are given.

[1]  Bryant Electrons in coupled vertical quantum dots: Interdot tunneling and Coulomb correlation. , 1993, Physical review. B, Condensed matter.

[2]  J. Leburton,et al.  Electronic coupling in InAs/GaAs self-assembled stacked double-quantum-dot systems , 1998 .

[3]  A. Zrenner A close look on single quantum dots , 2000 .

[4]  Pm Paul Koenraad,et al.  Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy , 2002 .

[5]  Andrew J. Shields,et al.  Single-photon emission from exciton complexes in individual quantum dots , 2001 .

[6]  A. Forchel,et al.  Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling. , 2003, Physical review letters.

[7]  A. Forchel,et al.  Zeeman splitting of excitons and biexcitons in single In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 1998 .

[8]  A. Zunger,et al.  Theory of excitonic spectra and entanglement engineering in dot molecules. , 2004, Physical review letters.

[9]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[10]  Kevin F. Brennan,et al.  Quantum Semiconductor Structures , 1992 .

[11]  J. Leburton,et al.  Enhanced intraband transitions with strong electric-field asymmetry in stacked InAs/GaAs self-assembled quantum dots , 2001 .

[12]  M. Hopkinson,et al.  Stacked low-growth-rate InAs quantum dots studied at the atomic level by cross-sectional scanning tunneling microscopy , 2003 .

[13]  X. Marie,et al.  Electron-spin quantum-beat dephasing in quantum wells as a probe of the hole band structure , 2000 .

[14]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[15]  P. G. Piva,et al.  Manipulating the energy levels of semiconductor quantum dots , 1999 .

[16]  H. Shtrikman,et al.  Comparative study of the negatively and positively charged excitons in GaAs quantum wells , 1999 .

[17]  W. Schaff,et al.  Photoluminescence and reflectance studies of negatively charged excitons in GaAs/Al 0.3 Ga 0.7 As quantum-well structures , 2000 .

[18]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.

[19]  Jean-Pierre Leburton,et al.  Anomalous quantum-confined Stark effects in stacked InAs/GaAs self-assembled quantum dots. , 2002, Physical review letters.

[20]  Dirk Reuter,et al.  Radiatively limited dephasing in InAs quantum dots , 2004 .

[21]  Bauer,et al.  Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots , 2000, Physical review letters.

[22]  Jean-Michel Gérard,et al.  Quantum Cascade of Photons in Semiconductor Quantum Dots , 2001 .

[23]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[24]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[25]  T. Reinecke,et al.  Exciton diamagnetic shift in semiconductor nanostructures , 1998 .

[26]  J. Leburton,et al.  Absence of correlation between built-in electric dipole moment and quantum Stark effect in single InAs/GaAs self-assembled quantum dots , 2002, cond-mat/0204579.

[27]  K. Hinzer,et al.  Coupling and entangling of quantum states in quantum dot molecules. , 2001, Science.

[28]  Charles Santori,et al.  Polarization-correlated photon pairs from a single quantum dot , 2002 .

[29]  A. Forchel,et al.  Exciton binding energies and diamagnetic shifts in semiconductor quantum wires and quantum dots , 1998 .

[30]  D. Gammon,et al.  Optical Studies of Single Quantum Dots , 2002 .

[31]  M. Henini,et al.  High field magnetoluminescence spectroscopy of self-assembled (InGa)As quantum dots on high index planes , 1998 .

[32]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[33]  J. Leburton,et al.  Enhanced Intraband Stark Effects in Stacked InAs/GaAs Self-Assembled Quantum Dots , 2001, Physical Models for Quantum Dots.

[34]  M Paillard,et al.  Spin relaxation quenching in semiconductor quantum dots. , 2001, Physical review letters.

[35]  Y. Lyanda-Geller,et al.  Spin relaxation in quantum dots , 2002 .

[36]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[37]  P. Hawrylak,et al.  Exciton dephasing in quantum dot molecules , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[38]  I. Shtrichman,et al.  Photoluminescence of a single InAs quantum dot molecule under applied electric field , 2002 .

[39]  A. R. Kovsh,et al.  Time-resolved photoluminescence in self-assembled InAs/GaAs quantum dots under strictly resonant excitation , 2000 .

[40]  Winston V. Schoenfeld,et al.  Saturation of THz-frequency intraband absorption in InAs/GaAs quantum dot molecules , 2000 .

[41]  Robert H. Blick,et al.  Probing and Controlling the Bonds of an Artificial Molecule , 2002, Science.

[42]  Zeeman spin splittings in semiconductor nanostructures , 2001 .

[43]  A. Forchel,et al.  Photoreflectance spectroscopy of vertically coupled InGaAs/GaAs double quantum dots , 2001 .

[44]  Y. Lyanda-Geller,et al.  Exciton fine structure in coupled quantum dots , 2004 .

[45]  S. Fafard,et al.  Determination of the size, shape, and composition of indium-flushed self-assembled quantum dots by transmission electron microscopy , 2000 .

[46]  R. Blick,et al.  Formation of a Coherent Mode in a Double Quantum Dot , 1998 .

[47]  R. T. Harley,et al.  Highly nonlinear Zeeman splitting of excitons in semiconductor quantum wells , 1997 .

[48]  G. Abstreiter,et al.  Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules , 1997, Science.

[49]  A. Zunger,et al.  Pseudopotential calculation of the excitonic fine structure of million-atom self-assembledIn1−xGaxAs/GaAsquantum dots , 2003 .

[50]  Z. R. Wasilewski,et al.  Coupled InAs/GaAs quantum dots with well-defined electronic shells , 2000 .

[51]  Johann Peter Reithmaier,et al.  ELECTRON AND HOLE G FACTORS AND EXCHANGE INTERACTION FROM STUDIES OF THE EXCITON FINE STRUCTURE IN IN0.60GA0.40AS QUANTUM DOTS , 1999 .

[52]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[53]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[54]  R. Venkatesh,et al.  Elastic and other associated properties of C 60 , 1997 .

[55]  R. Blick,et al.  COMPLEX BROADBAND MILLIMETER WAVE RESPONSE OF A DOUBLE QUANTUM DOT : RABI OSCILLATIONS IN AN ARTIFICIAL MOLECULE , 1998 .