Constructing cubature formulae of degree 5 with few points
暂无分享,去创建一个
[1] H. M. Möller,et al. Lower Bounds for the Number of Nodes in Cubature Formulae , 1979 .
[2] David L. Darmofal,et al. Higher-Dimensional Integration with Gaussian Weight for Applications in Probabilistic Design , 2005, SIAM J. Sci. Comput..
[3] H. J. Schmid. INTERPOLATORY CUBATURE FORMULAE AND REAL IDEALS , 1980 .
[4] Ronald Cools,et al. An encyclopaedia of cubature formulas , 2003, J. Complex..
[5] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[6] Erich Novak,et al. Cubature formulas for symmetric measures in higher dimensions with few points , 2007, Math. Comput..
[7] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[8] R. Cools. Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .
[9] Ronald Cools,et al. Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.
[10] I. P. Omelyan,et al. Improved cubature formulae of high degrees of exactness for the square , 2006 .
[11] R. Cools,et al. Monomial cubature rules since “Stroud”: a compilation , 1993 .
[12] Hans Joachim Schmid,et al. On the number of nodes in n -dimensional cubature formulae of degree 5 for integrals over the ball , 2004 .
[13] Masanori Sawa,et al. On Minimal Cubature Formulae of Small Degree for Spherically Symmetric Integrals , 2009, SIAM J. Numer. Anal..
[14] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[15] Zhongxuan Luo,et al. The construction of numerical integration rules of degree three for product regions , 2011, Appl. Math. Comput..
[16] Ronald Cools,et al. Rotation invariant cubature formulas over the n -dimensional unit cube , 2001 .
[17] Ronald Cools,et al. Advances in multidimensional integration , 2002 .
[18] A. Stroud. Approximate calculation of multiple integrals , 1973 .