Constructing cubature formulae of degree 5 with few points

This paper is devoted to construct a family of fifth degree cubature formulae for n-cube with symmetric measure and n-dimensional spherically symmetrical region. The formula forn-cube contains at most n^2+5n+3 points and for n-dimensional spherically symmetrical region contains only n^2+3n+3 points. Moreover, the numbers can be reduced to n^2+3n+1 and n^2+n+1 if n=7 respectively, the latter of which is minimal.

[1]  H. M. Möller,et al.  Lower Bounds for the Number of Nodes in Cubature Formulae , 1979 .

[2]  David L. Darmofal,et al.  Higher-Dimensional Integration with Gaussian Weight for Applications in Probabilistic Design , 2005, SIAM J. Sci. Comput..

[3]  H. J. Schmid INTERPOLATORY CUBATURE FORMULAE AND REAL IDEALS , 1980 .

[4]  Ronald Cools,et al.  An encyclopaedia of cubature formulas , 2003, J. Complex..

[5]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[6]  Erich Novak,et al.  Cubature formulas for symmetric measures in higher dimensions with few points , 2007, Math. Comput..

[7]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[8]  R. Cools Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .

[9]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[10]  I. P. Omelyan,et al.  Improved cubature formulae of high degrees of exactness for the square , 2006 .

[11]  R. Cools,et al.  Monomial cubature rules since “Stroud”: a compilation , 1993 .

[12]  Hans Joachim Schmid,et al.  On the number of nodes in n -dimensional cubature formulae of degree 5 for integrals over the ball , 2004 .

[13]  Masanori Sawa,et al.  On Minimal Cubature Formulae of Small Degree for Spherically Symmetric Integrals , 2009, SIAM J. Numer. Anal..

[14]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[15]  Zhongxuan Luo,et al.  The construction of numerical integration rules of degree three for product regions , 2011, Appl. Math. Comput..

[16]  Ronald Cools,et al.  Rotation invariant cubature formulas over the n -dimensional unit cube , 2001 .

[17]  Ronald Cools,et al.  Advances in multidimensional integration , 2002 .

[18]  A. Stroud Approximate calculation of multiple integrals , 1973 .