Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes

In [2] is proposed a simplified DeC method, that, when combined with the residual distribution (RD) framework, allows to construct a high order, explicit FE scheme with continuous approximation avoiding the inversion of the mass matrix for hyperbolic problems. In this paper, we close some open gaps in the context of deferred correction (DeC) and their application within the RD framework. First, we demonstrate the connection between the DeC schemes and the RK methods. With this knowledge, DeC can be rewritten as a convex combination of explicit Euler steps, showing the connection to the strong stability preserving (SSP) framework. Then, we can apply the relaxation approach introduced in [22] and construct entropy conservative/dissipative DeC (RDeC) methods, using the entropy correction function proposed in [3].

[1]  Rémi Abgrall,et al.  A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes , 2017, J. Comput. Phys..

[2]  Rémi Abgrall,et al.  A Review of Residual Distribution Schemes for Hyperbolic and Parabolic Problems: The July 2010 State of the Art , 2012 .

[3]  R. Abgrall,et al.  High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices , 2017, J. Sci. Comput..

[4]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[5]  Andreas Meister,et al.  On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows , 2014 .

[6]  D. Ketcheson,et al.  General relaxation methods for initial-value problems with application to multistep schemes , 2020, Numerische Mathematik.

[7]  Élise Le Mélédo,et al.  On the Connection between Residual Distribution Schemes and Flux Reconstruction , 2018, 1807.01261.

[8]  David I. Ketcheson,et al.  Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms , 2019, SIAM J. Numer. Anal..

[9]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[10]  Philipp Offner,et al.  Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes , 2019, Applied Numerical Mathematics.

[11]  Philipp Öffner,et al.  L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Stability of Explicit Runge–Kutta Schemes , 2017, Journal of Scientific Computing.

[12]  Colin B. Macdonald,et al.  Optimal implicit strong stability preserving Runge--Kutta methods , 2009 .

[13]  Chi-Wang Shu,et al.  Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws , 2017, J. Comput. Phys..

[14]  M. N. Spijker,et al.  An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..

[15]  J. Glaubitz,et al.  Stable discretisations of high-order discontinuous Galerkin methods on equidistant and scattered points , 2020, ArXiv.

[16]  Philipp Öffner,et al.  Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..

[17]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[18]  Chi-Wang Shu,et al.  Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows , 2018, J. Sci. Comput..

[19]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[20]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[21]  Hendrik Ranocha,et al.  Positivity-Preserving Adaptive Runge-Kutta Methods , 2021, Communications in Applied Mathematics and Computational Science.

[22]  Rémi Abgrall,et al.  Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability , 2019, Communications on Applied Mathematics and Computation.

[23]  Eitan Tadmor,et al.  From Semidiscrete to Fully Discrete: Stability of Runge-Kutta Schemes by The Energy Method , 1998, SIAM Rev..

[24]  Philipp Öffner,et al.  DeC and ADER: Similarities, Differences and an Unified Framework , 2020, ArXiv.

[25]  R. Abgrall,et al.  Analysis of the SBP-SAT Stabilization for Finite Element Methods Part I: Linear Problems , 2019, Journal of Scientific Computing.

[26]  Lisandro Dalcin,et al.  Relaxation Runge-Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations , 2019, SIAM J. Sci. Comput..

[27]  D. Kuzmin,et al.  Bound-preserving convex limiting for high-order Runge-Kutta time discretizations of hyperbolic conservation laws , 2020, ArXiv.

[28]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[29]  Rémi Abgrall,et al.  High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics , 2018, Comput. Math. Appl..

[30]  Mengping Zhang,et al.  STRONG STABILITY PRESERVING PROPERTY OF THE DEFERRED CORRECTION TIME DISCRETIZATION , 2008 .

[31]  Andrew J. Christlieb,et al.  Integral deferred correction methods constructed with high order Runge-Kutta integrators , 2009, Math. Comput..

[32]  Philipp Öffner,et al.  Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators , 2016 .

[33]  Hendrik Ranocha,et al.  Relaxation Runge–Kutta Methods for Hamiltonian Problems , 2020, J. Sci. Comput..

[34]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[35]  Rémi Abgrall,et al.  Reinterpretation and Extension of Entropy Correction Terms for Residual Distribution and Discontinuous Galerkin Schemes , 2019, J. Comput. Phys..

[36]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..