Soliton-based pump-seed synchronization for few-cycle OPCPA.

We demonstrate a significant simplification of the scheme for few-cycle Optical Parametric Chirped Pulse Amplification (OPCPA) which results in the elimination of a picosecond's master oscillator and electronic synchronization loops. A fraction of a broadband seed pulse centered at 760 nm from a 70-MHz Ti:sapphire oscillator was frequency-shifted in a photonic crystal fiber to enable synchronized seeding of a picosecond's Nd:YAG pump laser. The seed radiation at 1064 nm is produced in the soliton regime which makes it inherently more intense and stable in comparison with other methods of frequency conversion. The remaining fraction of the Ti:sapphire output is amplified with a FWHM bandwidth of 250 nm in a single timing-jitter-free OPCPA stage. Our work opens up the exciting possibility to use sub-picosecond's pump pulses from highly efficient Yb-based amplifiers for jitter-less parametric amplification of carrier-envelope phase stabilized pulses from Ti:sapphire oscillators.

[1]  Ruxin Li,et al.  Multiterawatt laser system based on optical parametric chirped pulse amplification. , 2002, Optics letters.

[2]  E. Dianov,et al.  Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers , 1985 .

[3]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[4]  A. J. Taylor,et al.  Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres , 2003, Nature.

[5]  G. Tempea,et al.  Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser , 2003 .

[6]  Takao Fuji,et al.  Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. , 2002, Optics letters.

[7]  A. Piskarskas,et al.  Multimillijoule chirped parametric amplification of few-cycle pulses. , 2005, Optics letters.

[8]  F. Krausz,et al.  Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers , 2005 .

[9]  Ferenc Krausz,et al.  Noise characterization of sub-10-fs Ti:sapphire oscillators , 1998 .

[10]  Self-Referenced 200 MHz Octave-Spanning Ti:Sapphire Laser with 50 Attosecond Carrier-Envelope Phase Jitter. , 2005, Optics express.

[11]  Audrius Dubietis,et al.  Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal , 1992 .

[12]  P. Russell Photonic Crystal Fibers , 2003, Science.

[13]  A. Piskarskas,et al.  Progress in Chirped Pulse Optical Parametric Amplifiers , 2004 .

[14]  K. Eikema,et al.  Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification. , 2005, Optics express.

[15]  Takao Fuji,et al.  Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. , 2002, Physical review letters.

[16]  C. Manzoni,et al.  Ultrabroadband self-phase-stabilized pulses by difference frequency generation , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[17]  S. G. Kosinski,et al.  Soliton self-frequency shift in a short tapered air-silica microstructure fiber. , 2001 .

[18]  Poppe,et al.  Controlling the phase evolution of few-cycle light pulses , 2000, Physical review letters.

[19]  Jian Wu,et al.  Generation of accurately synchronized pump source for optical parametric chirped pulse amplification , 2004 .

[20]  T. Norris,et al.  Production of 30-fs pulses tunable throughout the visible spectral region by a new technique in optical parametric amplification. , 1996, Optics letters.

[21]  S. Silvestri,et al.  Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. , 1998, Optics letters.

[22]  Ian N. Ross,et al.  The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers , 1997 .

[23]  W. Krupke,et al.  Ytterbium solid-state lasers. The first decade , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  K. Torizuka,et al.  Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers. , 2001, Optics letters.

[25]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[26]  A. Piskarskas,et al.  Tunable femtosecond pulses close to the transform limit from traveling-wave parametric conversion. , 1993, Optics letters.

[27]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[28]  S. Lochbrunner,et al.  Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR , 2000 .

[29]  Mark J. W. Rodwell,et al.  Subpicosecond laser timing stabilization , 1988 .

[30]  Akira Shirakawa,et al.  Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification , 1999 .