Review on supercapacitors: Technologies and materials

In this review, the technologies and working principles of different materials used in supercapacitors are explained. The most important supercapacitor active materials are discussed from both research and application perspectives, together with brief explanations of their properties, such as specific surface area and capacitance values. A review of different supercapacitor electrolytes is given and their positive and negative features are discussed. Finally, cell configurations are considered, pointing out the advantages and drawbacks of each configuration.

[1]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[2]  I. Zhitomirsky,et al.  Cathodic electrodeposition of MnOx films for electrochemical supercapacitors , 2006 .

[3]  R. Blum,et al.  Electrochemical Synthesis of Vanadium Oxide Nanofibers , 2008 .

[4]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[5]  Chunzhong Li,et al.  Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications , 2011 .

[6]  M. Anderson,et al.  Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide , 2000 .

[7]  Surjya K. Pal,et al.  Direct growth of aligned carbon nanotubes on bulk metals , 2006, Nature nanotechnology.

[8]  J. C. Amphlett,et al.  Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. II: Empirical model development , 1995 .

[9]  Milin Zhang,et al.  Hydrous–ruthenium–oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors , 2008 .

[10]  C. Lokhande,et al.  Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments , 2009 .

[11]  Po-Yu Chen,et al.  Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors , 2008 .

[12]  Bobby G. Sumpter,et al.  Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. , 2010, ACS nano.

[13]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[14]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[15]  A. Tanaka,et al.  Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[16]  Gleb Yushin,et al.  Nanostructured activated carbons from natural precursors for electrical double layer capacitors , 2012 .

[17]  Belén Lobato,et al.  Constant capacitance in nanopores of carbon monoliths. , 2015, Physical chemistry chemical physics : PCCP.

[18]  M. Sato,et al.  Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar , 2013 .

[19]  D. Cazorla-Amorós,et al.  Enhanced capacitance of carbon nanotubes through chemical activation , 2002 .

[20]  Brian E. Conway,et al.  Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices , 2003 .

[21]  V. Sokolov,et al.  Structure of nanoporous carbon produced from boron carbide , 2006 .

[22]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[23]  T. Centeno,et al.  The volumetric capacitance of microporous carbons in organic electrolyte , 2012 .

[24]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[25]  Branko N. Popov,et al.  Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors , 2003 .

[26]  G. Chen,et al.  Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole , 2002 .

[27]  Patrice Simon,et al.  Nanostructured Carbons : Double-Layer Capacitance and More , 2008 .

[28]  Rüdiger Kötz,et al.  Capacitance limits of high surface area activated carbons for double layer capacitors , 2005 .

[29]  C. Rao,et al.  Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis , 2013 .

[30]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[31]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[32]  B. Popov,et al.  Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method , 2002 .

[33]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[34]  Jeng‐Kuei Chang,et al.  Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes , 2009 .

[35]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[36]  Wendy G. Pell,et al.  Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour , 2001 .

[37]  A. Züttel,et al.  Carbon nanotube synthesized on metallic substrates , 2000 .

[38]  John R. Owen,et al.  A High-Performance Supercapacitor/Battery Hybrid Incorporating Templated Mesoporous Electrodes , 2003 .

[39]  Jingjing Xu,et al.  Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. , 2010, ACS nano.

[40]  Y. Gogotsi,et al.  Carbon coatings produced by high temperature chlorination of silicon carbide ceramics , 2001 .

[41]  C. Lokhande,et al.  Chemically deposited nanocrystalline NiO thin films for supercapacitor application , 2008 .

[42]  N. Miura,et al.  Indium Tin Oxide/Carbon Composite Electrode Material for Electrochemical Supercapacitors , 2004 .

[43]  Young Hee Lee,et al.  Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability. , 2010, ACS nano.

[44]  S. Jafari,et al.  Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction , 2008 .

[45]  Y. Gogotsi,et al.  Carbon coatings on silicon carbide by reaction with chlorine-containing gases , 1997 .

[46]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[47]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[48]  Jingsong Huang,et al.  Theoretical model for nanoporous carbon supercapacitors. , 2008, Angewandte Chemie.

[49]  Catia Arbizzani,et al.  Polymer-based supercapacitors , 2001 .

[50]  Xiaoping Zhou,et al.  Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material , 2009 .

[51]  Norio Miura,et al.  Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors , 2004 .

[52]  M. Anderson,et al.  Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors , 2002 .

[53]  A. Pandolfo,et al.  Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode , 2012 .

[54]  Chi-Chang Hu,et al.  Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition , 2003 .

[55]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[56]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[57]  Qiang Zhang,et al.  A Three‐Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors , 2010, Advanced materials.

[58]  Jun Chen,et al.  A Co(OH)2−graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries , 2010 .

[59]  A. Zolfaghari,et al.  Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method , 2007 .

[60]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[61]  A. Govindaraj,et al.  Graphene-based electrochemical supercapacitors , 2008 .

[62]  Jinghong Li,et al.  Ionic liquids in surface electrochemistry. , 2010, Physical chemistry chemical physics : PCCP.

[63]  Scott W. Donne,et al.  Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate , 2010 .

[64]  Feng Wu,et al.  RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor , 2007 .

[65]  Feng-Jiin Liu,et al.  Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid)–polyaniline for supercapacitor , 2008 .

[66]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[67]  Junli Xu,et al.  Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode , 2014 .

[68]  M. Pumera Graphene-based nanomaterials and their electrochemistry. , 2010, Chemical Society reviews.

[69]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[70]  Il-hwan Kim,et al.  Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications , 2006 .

[71]  N. Wu,et al.  Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor , 2002 .

[72]  O. Joo,et al.  Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide , 2006 .

[73]  Jeffrey W. Long,et al.  Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials , 1999 .

[74]  T. S. Bhatti,et al.  A review on electrochemical double-layer capacitors , 2010 .

[75]  W. Sugimoto,et al.  Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides , 2006 .

[76]  I. Zhitomirsky,et al.  Manganese oxide films for electrochemical supercapacitors , 2007 .

[77]  Jim P. Zheng,et al.  A New Charge Storage Mechanism for Electrochemical Capacitors , 1995 .

[78]  Youhai Yu,et al.  A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. , 2014, Journal of colloid and interface science.

[79]  Masahiro Toyoda,et al.  Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors , 2008 .

[80]  Yude Wang,et al.  Graphene nanosheets-tungsten oxides composite for supercapacitor electrode , 2014, Ceramics International.

[81]  Chi-Chang Hu,et al.  How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors , 2004 .

[82]  Ramana G. Reddy,et al.  Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material , 2004 .

[83]  Jim P. Zheng,et al.  High energy and high power density electrochemical capacitors , 1996 .

[84]  Jianfang Wang,et al.  RuO2/graphene hybrid material for high performance electrochemical capacitor , 2014 .

[85]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[86]  Wenzhi Li,et al.  Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors , 2002 .

[87]  T. Centeno,et al.  Pore size distribution and capacitance in microporous carbons. , 2012, Physical chemistry chemical physics : PCCP.

[88]  Patricia H. Smith,et al.  Mesoporous anhydrous RuO2 as a supercapacitor electrode material , 2004 .

[89]  Catia Arbizzani,et al.  Polymer-based redox supercapacitors: A comparative study , 1996 .

[90]  Chen Ye,et al.  Electrochemical and Capacitance Properties of Rod-Shaped MnO2 for Supercapacitor , 2005 .

[91]  Y. Murakami,et al.  Dip‐Coated Ru‐V Oxide Electrodes for Electrochemical Capacitors , 1997 .

[92]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[93]  R. Kötz,et al.  Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits , 2012 .

[94]  Yong Jung Kim,et al.  Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons , 2004 .

[95]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[96]  François Béguin,et al.  Nanotubular materials as electrodes for supercapacitors , 2002 .

[97]  Patrice Simon,et al.  New Materials and New Configurations for Advanced Electrochemical Capacitors , 2008 .

[98]  François Béguin,et al.  Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors , 2005 .

[99]  Yuyuan Tian,et al.  Measurement of the quantum capacitance of graphene. , 2009, Nature nanotechnology.

[100]  Jun Chen,et al.  Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films , 2006 .

[101]  R. Kötz,et al.  An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors , 2006 .

[102]  G. Chen,et al.  Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole , 2002 .

[103]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[104]  Xiangkang Meng,et al.  The synthesis of graphene oxide nanostructures for supercapacitors: a simple route , 2014, Journal of Materials Science.

[105]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[106]  J. Nam,et al.  RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors , 2010 .

[107]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[108]  M. Egashira,et al.  Pseudo-capacitance of composite electrode of ruthenium oxide with porous carbon in non-aqueous electrolyte containing imidazolium salt , 2010 .

[109]  F. Béguin,et al.  Supercapacitors based on conducting polymers/nanotubes composites , 2006 .

[110]  R. Haushalter,et al.  Electroless metallization of organic polymers using the polymer as a redox reagent: Reaction of polyimide with zintl anions , 1983 .

[111]  I. Zhitomirsky,et al.  Electrochemical capacitance of MnOx films , 2007 .

[112]  H. Takenouti,et al.  Anodic behaviour of manganese in alkaline medium , 2001 .

[113]  Ralph E. White,et al.  Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors , 2001 .

[114]  Yu‐Sheng Lin,et al.  Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes , 2009 .

[115]  T. Wen,et al.  Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides , 1992 .

[116]  Wei Zhao,et al.  Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. , 2013, Bioresource technology.

[117]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[118]  J. Keum,et al.  Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[119]  Norio Miura,et al.  Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide , 2006 .

[120]  Inmaculada Ortiz,et al.  Progress in the use of ionic liquids as electrolyte membranes in fuel cells , 2014 .

[121]  T. Hara,et al.  Deposition and Properties of Reactively Sputtered Ruthenium Dioxide Films , 1993 .

[122]  Chi-Chang Hu,et al.  Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition , 2002 .

[123]  Pierre-Louis Taberna,et al.  Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications , 2004 .

[124]  T. Wen,et al.  Oxygen evolution and hypochlorite production on Ru-Pt binary oxides , 1996 .

[125]  Guangmin Zhou,et al.  Graphene/metal oxide composite electrode materials for energy storage , 2012 .

[126]  Soojin Park,et al.  Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites , 2010 .

[127]  Yong‐Tae Kim,et al.  Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials , 2005 .

[128]  Jeng‐Kuei Chang,et al.  In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications , 2007 .

[129]  Junhua Jiang,et al.  Electrochemical supercapacitor material based on manganese oxide: preparation and characterization , 2002 .

[130]  W. Yonggang,et al.  Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites , 2004 .

[131]  Debra R. Rolison,et al.  Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage , 1999 .

[132]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[133]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[134]  D. Ivey,et al.  Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors , 2010 .

[135]  G. Yushin,et al.  Carbide-Derived Carbons , 2017 .

[136]  Hailiang Wang,et al.  Nanocrystal growth on graphene with various degrees of oxidation. , 2010, Journal of the American Chemical Society.

[137]  Seong Chu Lim,et al.  Supercapacitors Using Single‐Walled Carbon Nanotube Electrodes , 2001 .

[138]  Chi-Chang Hu,et al.  Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium–iridium oxides for electrochemical supercapacitors , 2002 .

[139]  Kunfeng Chen,et al.  Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode. , 2014, Journal of colloid and interface science.

[140]  Xiaogang Zhang,et al.  Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor , 2007 .

[141]  Zhen-tao Zhou,et al.  Preparation and electrochemical performance of novel ruthenium–manganese oxide electrode materials for electrochemical capacitors , 2009 .

[142]  H. Dai,et al.  Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. , 2010, Journal of the American Chemical Society.

[143]  Jean Gamby,et al.  Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors , 2001 .

[144]  A. Rao,et al.  Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide , 2003 .

[145]  Marina Mastragostino,et al.  New trends in electrochemical supercapacitors , 2001 .

[146]  Adinaveen Thambidurai,et al.  Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors — a comparative investigation , 2014, Korean Journal of Chemical Engineering.

[147]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[148]  Lei Zhang,et al.  Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes , 2013 .

[149]  Wen-Ta Tsai,et al.  Effects of Iron Addition on Material Characteristics and Pseudo-Capacitive Behavior of Mn-Oxide Electrodes , 2007 .

[150]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[151]  Jie Cheng,et al.  Preparation and electrochemical properties of lamellar MnO2 for supercapacitors , 2010 .

[152]  Weizhong Qian,et al.  Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors , 2010 .

[153]  H. Teng,et al.  Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors , 2010 .

[154]  Deyang Qu,et al.  Studies of the activated carbons used in double-layer supercapacitors , 2002 .

[155]  W. Sugimoto,et al.  Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. , 2005, The journal of physical chemistry. B.

[156]  Mathieu Toupin,et al.  Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide , 2002 .

[157]  Xiao‐Qing Yang,et al.  Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes , 2009 .

[158]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[159]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[160]  Y. Gogotsi,et al.  Formation of Carbide-Derived Carbon on β-Silicon Carbide Whiskers , 2006 .

[161]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[162]  Chao-Ming Huang,et al.  Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors , 2008 .

[163]  D. Y. Kim,et al.  Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates , 2006 .

[164]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[165]  Jaan Leis,et al.  Electrical double layer characteristics of nanoporous carbon derived from titanium carbide , 2006 .

[166]  Thomas Christen,et al.  Theory of Ragone plots , 2000 .

[167]  M. Endo,et al.  High Power Electric Double Layer Capacitor (EDLC's); from Operating Principle to Pore Size Control in Advanced Activated Carbons , 2001 .

[168]  C. Liang,et al.  Mesoporous carbon materials: synthesis and modification. , 2008, Angewandte Chemie.

[169]  S. G. Kandalkar,et al.  Preparation of cobalt oxide thin films and its use in supercapacitor application , 2008 .

[170]  Q. Jia,et al.  EPITAXIAL GROWTH OF HIGHLY CONDUCTIVE RUO2 THIN FILMS ON (100) SI , 1996 .

[171]  Zhu-de Xu,et al.  Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes , 2006 .

[172]  M. Brett,et al.  Investigation of thin sputtered Mn films for electrochemical capacitors , 2004 .

[173]  J. Singer,et al.  Titanium Carbide Derived Nanoporous Carbon for Energy-Related Applications , 2006 .

[174]  Yury Gogotsi,et al.  Effect of pore size and surface area of carbide derived carbons on specific capacitance , 2006 .

[175]  G. Wallace,et al.  Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper , 2008 .

[176]  Y. Gogotsi,et al.  Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films. , 2004 .

[177]  F. Béguin,et al.  Capacitance properties of ordered porous carbon materials prepared by a templating procedure , 2004 .

[178]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.