Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries

Abstract Rechargeable lithium–air (O2) batteries have received much attention due to their extremely high theoretical energy densities, which far exceeds that of current lithium-ion batteries. The considerable high energy densities come from (i) pure metal lithium as anode and (ii) the cathode oxidant, oxygen, which comes from the surrounding air. However, there are still many scientific and technical challenges especially nanomaterial challenges to overcome before it turns into reality. In this review, the fundamental principles and understanding of the electrochemical reaction in the aprotic lithium–air batteries are first presented. We emphasized on the discussion of the nanomaterial's issues which prevent their practical implementation, including the material status and challenges from cathode, electrolyte, anode and other components. These problems will be discussed in detail and possible solutions are also suggested. Finally, we explore future research directions in the field of aprotic rechargeable lithium–air batteries.

[1]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[2]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[3]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[4]  Petru Andrei,et al.  Some Possible Approaches for Improving the Energy Density of Li-air Batteries , 2010 .

[5]  C. Hong,et al.  Quantum Analysis on the Platinum/Nitrogen Doped Carbon Nanotubes for the Oxygen Reduction Reaction at the Air Cathode of Lithium-Air Batteries and Fuel Cells , 2012 .

[6]  Ian Brown,et al.  New developments in the Electric Fuel Ltd. zinc/air system , 1999 .

[7]  Bing Sun,et al.  Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance , 2012 .

[8]  G. Cao,et al.  Self-assembled nanoporous rutile TiO2 mesocrystals with tunable morphologies for high rate lithium-ion batteries , 2012 .

[9]  Ping He,et al.  A Li-air fuel cell with recycle aqueous electrolyte for improved stability , 2010 .

[10]  S. Suib,et al.  Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes , 2011 .

[11]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[12]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[13]  G. Nagasubramanian,et al.  Effects of 12‐Crown‐4 Ether on the Electrochemical Performance of CoO2 and TiS2 Cathodes in Li Polymer Electrolyte Cells , 1992 .

[14]  Christopher S. Johnson,et al.  Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells , 2011 .

[15]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[16]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[17]  Ji-Guang Zhang,et al.  Air electrode design for sustained high power operation of Li/air batteries , 2009 .

[18]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[19]  R. Li,et al.  Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts. , 2010, Chemistry.

[20]  Ping He,et al.  A lithium–air capacitor–battery based on a hybrid electrolyte , 2011 .

[21]  D. T. Sawyer,et al.  Effects of media and electrode materials on the electrochemical reduction of dioxygen , 1982 .

[22]  G. Cui,et al.  Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. , 2011, Chemical communications.

[23]  Ruoshi Li,et al.  Novel composite polymer electrolyte for lithium air batteries , 2010 .

[24]  K. C. Tsai,et al.  Anodic Behavior of Lithium in Aqueous Electrolytes I . Transient Passivation , 1976 .

[25]  T. Ishihara,et al.  Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery , 2011 .

[26]  T. Ishihara,et al.  Pd / MnO2 Air Electrode Catalyst for Rechargeable Lithium/Air Battery , 2010 .

[27]  H. Gasteiger,et al.  Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries , 2010 .

[28]  G. Graff,et al.  Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte , 2011 .

[29]  Tao Huang,et al.  Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries , 2012, Journal of Solid State Electrochemistry.

[30]  Jianguo Liu,et al.  Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts , 2012 .

[31]  Jianlin Shi,et al.  SBA-15 supported quaternary ammonium salt: an efficient, heterogeneous phase-transfer catalyst , 2004 .

[32]  S. Ramaprabhu,et al.  Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fu , 2011 .

[33]  Srikanth Allu,et al.  Anomalous Discharge Product Distribution in Lithium-Air Cathodes , 2012 .

[34]  Gao Yun-zhi,et al.  High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell , 2007 .

[35]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[36]  니몬 예브게니에스.,et al.  Ionically conductive composites for protection of active metal anodes , 2003 .

[37]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[38]  Ji‐Guang Zhang,et al.  Ambient operation of Li/Air batteries , 2010 .

[39]  Gbolahan O. Shitta-Bey,et al.  The Electrochemical Performance of Phenol-Formaldehyde Based Activated Carbon Electrodes for Lithium/Oxygen Batteries , 2012 .

[40]  Wei Liu,et al.  Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air , 2010 .

[41]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[42]  Jun Lu,et al.  Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes , 2011 .

[43]  Qian Sun,et al.  Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium Air Batteries , 2011 .

[44]  Joan Fuller,et al.  The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate : Electrochemical couples and physical properties , 1997 .

[45]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[46]  Ken-ichiro Ota,et al.  Sulfated-Zirconia as a Support of Pt Catalyst for Polymer Electrolyte Fuel Cells , 2007 .

[47]  Barry Lygo,et al.  Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: asymmetric alkylation of glycine imines. , 2004, Accounts of chemical research.

[48]  K. Ota,et al.  Effect of Tin Oxides on Oxide Formation and Reduction of Platinum Particles , 2007 .

[49]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[50]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[51]  O. Haas,et al.  Modeling of an electrically rechargeable alkaline Zn–air battery , 2002 .

[52]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[53]  Lipeng Zhang,et al.  Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells , 2011 .

[54]  Su-Huai Wei,et al.  Implications of the Formation of Small Polarons in Li2O2 for Li-Air Batteries , 2012 .

[55]  Shengbo Zhang,et al.  Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery , 2011 .

[56]  A. Gedanken,et al.  Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. , 2007, Small.

[57]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[58]  Xueliang Sun,et al.  Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries , 2012 .

[59]  B. Kumar,et al.  Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries , 2011 .

[60]  Ben Wang,et al.  Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes , 2010 .

[61]  S. S. Sandhu,et al.  Diffusion-limited model for a lithium/air battery with an organic electrolyte , 2007 .

[62]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[63]  R. Li,et al.  Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. , 2011, Chemical communications.

[64]  Shengbo Zhang,et al.  Oxygen reduction reaction catalyst on lithium/air battery discharge performance , 2011 .

[65]  X. G. Zhang,et al.  Fibrous zinc anodes for high power batteries , 2006 .

[66]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[67]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[68]  Jim P. Zheng,et al.  α-MnO2/Carbon Nanotube/Carbon Nanofiber Composite Catalytic Air Electrodes for Rechargeable Lithium-air Batteries , 2011 .

[69]  Muhammad M Hussain,et al.  Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell. , 2012, Nano letters.

[70]  Stability predictions of solid Li-ion conducting membranes in aqueous solutions , 2010 .

[71]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[72]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[73]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[74]  John B. Goodenough,et al.  CoMn2O4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries , 2011 .

[75]  Peter Hall,et al.  Preparation of controlled porosity carbon-aerogels for energy storage in rechargeable lithium oxygen batteries , 2009 .

[76]  Jian Zhang,et al.  Air Dehydration Membranes for Nonaqueous Lithium–Air Batteries , 2010 .

[77]  Xiao‐Qing Yang,et al.  High Rate Oxygen Reduction in Non-aqueous Electrolytes with the Addition of Perfluorinated Additives , 2011 .

[78]  Zoraida González,et al.  Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries , 2012 .

[79]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[80]  J. Liang,et al.  Functional Materials for Rechargeable Batteries , 2011, Advanced materials.

[81]  N. Sammes,et al.  Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries , 2009 .

[82]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[83]  Keith Scott,et al.  Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries , 2010 .

[84]  R. Li,et al.  Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells , 2009 .

[85]  Y. Hwang,et al.  Photoluminescence characteristics of Cd1-xMnxTe single crystals grown by the vertical Bridgman method , 2012, Nanoscale Research Letters.

[86]  Kang Xu,et al.  Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes , 2011 .

[87]  Ye Xu,et al.  Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium. , 2012, The journal of physical chemistry letters.

[88]  Shyue Ping Ong,et al.  First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery , 2011, Physical Review B.

[89]  R. Li,et al.  High Electrocatalytic Activity of Platinum Nanoparticles on SnO2 Nanowire-Based Electrodes , 2007 .

[90]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[91]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[92]  Benjamin Meyer,et al.  Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane , 2012 .

[93]  Jitendra Kumar,et al.  Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries. , 2012, ACS applied materials & interfaces.

[94]  R. Li,et al.  3D boron doped carbon nanorods/carbon-microfiber hybrid composites: synthesis and applications in a highly stable proton exchange membrane fuel cell , 2011 .

[95]  Peng Chen,et al.  Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application , 2012 .

[96]  Haoshen Zhou,et al.  To draw an air electrode of a Li–air battery by pencil , 2011 .

[97]  K. Edström,et al.  Influence of the cathode porosity on the discharge performance of the lithiumoxygen battery , 2011 .

[98]  Y. Ding,et al.  MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries , 2011 .

[99]  M. Matsuka,et al.  Manganese oxide with a card-house-like structure reassembled from nanosheets for rechargeable Li-air battery , 2012 .

[100]  Yuyan Shao,et al.  Nanostructured carbon for energy storage and conversion , 2012 .

[101]  Madhu S Saha,et al.  High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells , 2008 .

[102]  M. Salomon,et al.  Methoxybenzene as an Electrolyte Solvent for the Primary Lithium Metal Air Battery , 2011 .

[103]  P. He,et al.  Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. , 2011, Chemical communications.

[104]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[105]  Binod Kumar,et al.  Cathodes for Solid-State Lithium–Oxygen Cells: Roles of Nasicon Glass-Ceramics , 2010 .

[106]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[107]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[108]  Xueliang Sun,et al.  Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries , 2011 .

[109]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[110]  T. Laino,et al.  A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. , 2012, Chemistry.

[111]  Shengbo Zhang,et al.  The effect of quaternary ammonium on discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2011 .

[112]  Wu Xu,et al.  Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment , 2009 .

[113]  Duncan Graham,et al.  Oxygen reactions in a non-aqueous Li+ electrolyte. , 2011, Angewandte Chemie.

[114]  X. Sun,et al.  Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media , 2011 .

[115]  W. Bennett,et al.  Hierarchically porous graphene as a lithium-air battery electrode. , 2011, Nano letters.

[116]  J. Grotberg,et al.  Distribution dynamics of perfluorocarbon delivery to the lungs: an intact rabbit model. , 2004, Journal of applied physiology.

[117]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[118]  R. Li,et al.  Nitrogen Doping Effects on Carbon Nanotubes and the Origin of the Enhanced Electrocatalytic Activity of Supported Pt for Proton-Exchange Membrane Fuel Cells , 2011 .

[119]  Haoshen Zhou,et al.  N-Doped Graphene Nanosheet for Li-Air Fuel Cell under Acidic Conditions , 2012 .

[120]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[121]  Z. Wen,et al.  Mesoporous Co3O4 with different porosities as catalysts for the lithium–oxygen cell , 2012 .

[122]  Wu Xu,et al.  Optimization of Air Electrode for Li/Air Batteries , 2010 .

[123]  Paul C. Johnson,et al.  A study on lithium/air secondary batteries—Stability of NASICON-type glass ceramics in acid solutions , 2010 .

[124]  H. Zimmermann Relation between Quantum Thermodynamics and Classical Thermodynamics , 2010 .

[125]  L. Dai,et al.  Carbon nanomaterials as metal-free catalysts in next generation fuel cells , 2012 .

[126]  F. Gollan,et al.  Survival of Mammals Breathing Organic Liquids Equilibrated with Oxygen at Atmospheric Pressure , 1966, Science.

[127]  R. Li,et al.  High oxygen-reduction activity and durability of nitrogen-doped graphene , 2011 .

[128]  Nancy J. Dudney,et al.  Current Collectors for Rechargeable Li-Air Batteries , 2011 .

[129]  N. Imanishi,et al.  Aqueous Lithium/Air Rechargeable Batteries , 2011 .

[130]  Arumugam Manthiram,et al.  A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte , 2012 .

[131]  S. Ramaprabhu,et al.  Solar exfoliated graphene–carbon nanotube hybrid nano composites as efficient catalyst supports for proton exchange membrane fuel cells , 2011 .

[132]  Kai Huang,et al.  Rechargeable lithium battery based on a single hexagonal tungsten trioxide nanowire , 2012 .

[133]  Jim P. Zheng,et al.  Preparation, Characterization and Electrochemical Catalytic Properties of Hollandite Ag2Mn8O16 for Li-Air Batteries , 2012 .

[134]  Z. Wen,et al.  A free-standing-type design for cathodes of rechargeable Li–O2 batteries , 2011 .

[135]  Wu Xu,et al.  Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries , 2010 .

[136]  C. Milleville,et al.  Electrodes for Nonaqueous Oxygen Reduction Based upon Conductive Polymer-Silver Composites , 2011 .

[137]  Wu Xu,et al.  Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries , 2010 .

[138]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[139]  Michael J. Zaworotko,et al.  Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids , 1992 .

[140]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature Communications.

[141]  Yuyan Shao,et al.  Platinum Deposition on Multiwalled Carbon Nanotubes by Ion-Exchange Method as Electrocatalysts for Oxygen Reduction , 2007 .

[142]  Eugene A. Goodilin,et al.  Protected anodes for lithium-air batteries , 2011 .

[143]  Yongyao Xia,et al.  The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery , 2009 .

[144]  V. Koch,et al.  Differential Capacitance Measurements in Solvent‐Free Ionic Liquids at Hg and C Interfaces , 1997 .

[145]  R. Li,et al.  Pd nanoparticles deposited on vertically aligned carbon nanotubes grown on carbon paper for formic acid oxidation , 2009 .

[146]  Jun Chen,et al.  Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. , 2011, Nature chemistry.

[147]  J. Read Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery , 2006 .

[148]  Kai Xie,et al.  Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries , 2012 .

[149]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[150]  J. S. Lee,et al.  An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum , 2006 .

[151]  Xueliang Sun,et al.  Discharge product morphology and increased charge performance of lithium–oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping , 2012 .

[152]  Deyang Qu,et al.  Investigation of the Gas-Diffusion-Electrode Used as Lithium/Air Cathode in Non-aqueous Electrolyte and the Importance of Carbon Material Porosity , 2010 .

[153]  K. M. Abraham,et al.  Lithium-air and lithium-sulfur batteries , 2011 .

[154]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[155]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[156]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[157]  Journal of the Chemical Society , 1875, The British and Foreign Medico-Chirurgical Review.

[158]  Toshihiko Nakagawa,et al.  Improvement of cathode materials for polymer electrolyte fuel cell , 2004 .

[159]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[160]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[161]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[162]  Lei Jin,et al.  Titanium Containing γ‐MnO2 (TM) Hollow Spheres: One‐Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions , 2010 .

[163]  Mohan Karulkar,et al.  Bipolar plate cell design for a lithium air battery , 2012 .

[164]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[165]  Ping He,et al.  The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid ele , 2011 .

[166]  Tejs Vegge,et al.  The role of transition metal interfaces on the electronic transport in lithium–air batteries , 2011 .

[167]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[168]  Z. Wen,et al.  Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery , 2012, Journal of Solid State Electrochemistry.

[169]  K. Amine,et al.  Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates A Quantum Chemical Study , 2004 .

[170]  Douglas R. Kauffman,et al.  Electrocatalytic activity of nitrogen-doped carbon nanotube cups. , 2009, Journal of the American Chemical Society.

[171]  Francesco Faglioni,et al.  Stability of lithium superoxide LiO2 in the gas phase: computational study of dimerization and disproportionation reactions. , 2010, The journal of physical chemistry. A.

[172]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[173]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[174]  Yuyan Shao,et al.  Investigation of Further Improvement of Platinum Catalyst Durability with Highly Graphitized Carbon Nanotubes Support , 2008 .

[175]  M. Morita,et al.  Effects of Crown Ether Addition to Organic Electrolytes on the Cycling Behavior of the TiS2 Electrode , 1987 .

[176]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[177]  Haoshen Zhou,et al.  A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. , 2010, Chemical communications.

[178]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[179]  Ye Xu,et al.  O2 reduction by lithium on Au(111) and Pt(111). , 2010, The Journal of chemical physics.

[180]  Hubert A. Gasteiger,et al.  The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries , 2012 .

[181]  Venkat Srinivasan,et al.  Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells , 2012 .

[182]  Rajeev S. Assary,et al.  Computational Studies of Polysiloxanes: Oxidation Potentials and Decomposition Reactions , 2011 .

[183]  G. Nagasubramanian,et al.  12‐Crown‐4 Ether‐Assisted Enhancement of Ionic Conductivity and Interfacial Kinetics in Polyethylene Oxide Electrolytes , 1990 .

[184]  Jim P. Zheng,et al.  Theoretical Energy Density of Li–Air Batteries , 2008 .

[185]  Boris Kozinsky,et al.  Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling , 2011 .

[186]  T. Ishihara,et al.  Mesoporous β-MnO2 Air Electrode Modified with Pd for Rechargeability in Lithium-Air Battery , 2011 .

[187]  Siew Hwa Chan,et al.  Graphene‐Based Materials for Energy Conversion , 2012, Advanced materials.

[188]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[189]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[190]  E. Antolini Graphene as a new carbon support for low-temperature fuel cell catalysts , 2012 .

[191]  R. F. Bartholomew,et al.  Electrical Properties of Some Titanium Oxides , 1969 .

[192]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[193]  Toh-Ming Lu,et al.  Nanostructured electrodes for high-power lithium ion batteries , 2012 .

[194]  R. Li,et al.  Carbon nanotubes supported Pt–Au catalysts for methanol-tolerant oxygen reduction reaction: A comparison between Pt/Au and PtAu nanoparticles , 2009 .

[195]  Sanjeev Mukerjee,et al.  Oxygen Electrode Rechargeability in an Ionic Liquid for the Li–Air Battery , 2011 .

[196]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[197]  X. Sun,et al.  Carbon-coated tungsten oxide nanowires supported Pt nanoparticles for oxygen reduction , 2012 .