Persistence-Based Clustering in Riemannian Manifolds
暂无分享,去创建一个
Leonidas J. Guibas | Steve Oudot | Frédéric Chazal | Primoz Skraba | L. Guibas | F. Chazal | S. Oudot | P. Skraba | L. Guibas | Leonidas J. Guibas
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[3] Keinosuke Fukunaga,et al. A Graph-Theoretic Approach to Nonparametric Cluster Analysis , 1976, IEEE Transactions on Computers.
[4] Godfried T. Toussaint,et al. The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..
[5] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[6] W. L. Jorgensen,et al. Comparison of simple potential functions for simulating liquid water , 1983 .
[7] Luc Devroye,et al. Nonparametric Density Estimation , 1985 .
[8] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[9] F. Morgan. Geometric Measure Theory: A Beginner's Guide , 1988 .
[10] H. Scheraga,et al. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests. , 1989, Journal of biomolecular structure & dynamics.
[11] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[12] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[13] Sunil Arya,et al. ANN: library for approximate nearest neighbor searching , 1998 .
[14] Herbert Edelsbrunner,et al. Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[15] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[16] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[17] Herbert Edelsbrunner,et al. Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.
[18] Thomas H. Cormen,et al. Introduction to algorithms [2nd ed.] , 2001 .
[19] A. Authier. Acta Crystallographica Section A: Foundations of Crystallography , 2002 .
[20] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[21] Hans-Peter Kriegel,et al. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.
[22] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[23] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[24] D. Theobald. short communications Acta Crystallographica Section A Foundations of , 2005 .
[25] Bruno Pelletier. Kernel density estimation on Riemannian manifolds , 2005 .
[26] Leonidas J. Guibas,et al. Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..
[27] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..
[28] Bruno Pelletier. Non-parametric regression estimation on closed Riemannian manifolds , 2006 .
[29] W. Huisinga,et al. Metastability and Dominant Eigenvalues of Transfer Operators , 2006 .
[30] Peter Meer,et al. Nonlinear Mean Shift for Clustering over Analytic Manifolds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[31] John D. Chodera,et al. Long-Time Protein Folding Dynamics from Short-Time Molecular Dynamics Simulations , 2006, Multiscale Model. Simul..
[32] Patrizio Frosini,et al. Using matching distance in size theory: A survey , 2006, Int. J. Imaging Syst. Technol..
[33] Vin de Silva,et al. On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.
[34] D. Cohen-Steiner,et al. Geometric Inference , 2007 .
[35] K. Dill,et al. Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. , 2007, The Journal of chemical physics.
[36] Frédo Durand,et al. A Topological Approach to Hierarchical Segmentation using Mean Shift , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[37] Ken A Dill,et al. Use of the Weighted Histogram Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations. , 2007, Journal of chemical theory and computation.
[38] R. Ghrist. Barcodes: The persistent topology of data , 2007 .
[39] Takeo Kanade,et al. Mode-seeking by Medoidshifts , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[40] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[41] Chih-Jen Lin,et al. PSC : Parallel Spectral Clustering , 2008 .
[42] Stefano Soatto,et al. Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.
[43] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[44] Leonidas J. Guibas,et al. Proximity of persistence modules and their diagrams , 2009, SCG '09.
[45] Gunnar E. Carlsson,et al. Topology and data , 2009 .
[46] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[47] Leonidas J. Guibas,et al. Analysis of scalar fields over point cloud data , 2009, SODA.
[48] L. Devroye,et al. A weighted k-nearest neighbor density estimate for geometric inference , 2011 .
[49] Frédéric Chazal,et al. Geometric Inference for Measures based on Distance Functions , 2011 .
[50] Leonidas J. Guibas,et al. Persistence-based clustering in riemannian manifolds , 2011, SoCG '11.
[51] Leonidas J. Guibas,et al. Scalar Field Analysis over Point Cloud Data , 2011, Discret. Comput. Geom..
[52] H. Edelsbrunner,et al. Persistent Homology — a Survey , 2022 .
[53] R. Ho. Algebraic Topology , 2022 .