Incremental nonlinear dimensionality reduction by manifold learning

Understanding the structure of multidimensional patterns, especially in unsupervised cases, is of fundamental importance in data mining, pattern recognition, and machine learning. Several algorithms have been proposed to analyze the structure of high-dimensional data based on the notion of manifold learning. These algorithms have been used to extract the intrinsic characteristics of different types of high-dimensional data by performing nonlinear dimensionality reduction. Most of these algorithms operate in a "batch" mode and cannot be efficiently applied when data are collected sequentially. In this paper, we describe an incremental version of ISOMAP, one of the key manifold learning algorithms. Our experiments on synthetic data as well as real world images demonstrate that our modified algorithm can maintain an accurate low-dimensional representation of the data in an efficient manner.

[1]  Bernhard Schölkopf,et al.  Regularized Principal Manifolds , 1999, J. Mach. Learn. Res..

[2]  A. Martínez,et al.  The AR face databasae , 1998 .

[3]  Giuseppe F. Italiano,et al.  A new approach to dynamic all pairs shortest paths , 2003, STOC '03.

[4]  Carl-Fredrik Westin,et al.  Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps , 2003, EUROCAST.

[5]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[6]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[7]  Geoffrey E. Hinton,et al.  Modeling the manifolds of images of handwritten digits , 1997, IEEE Trans. Neural Networks.

[8]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[9]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[10]  Matti Pietikäinen,et al.  Unsupervised learning using locally linear embedding: experiments with face pose analysis , 2002, Object recognition supported by user interaction for service robots.

[11]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[12]  Changbo Hu,et al.  Probabilistic expression analysis on manifolds , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Anil K. Jain,et al.  Ethnicity identification from face images , 2004, SPIE Defense + Commercial Sensing.

[14]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[15]  Kai-Yeung Siu,et al.  New dynamic SPT algorithm based on a ball-and-string model , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[16]  Ben J. A. Kröse,et al.  Coordinating Principal Component Analyzers , 2002, ICANN.

[17]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[18]  R. Tibshirani Principal curves revisited , 1992 .

[19]  Ming-Hsuan Yang,et al.  Face recognition using extended isomap , 2002, Proceedings. International Conference on Image Processing.

[20]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[21]  Anil K. Jain,et al.  An Intrinsic Dimensionality Estimator from Near-Neighbor Information , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Ahmed M. Elgammal,et al.  Inferring 3D body pose from silhouettes using activity manifold learning , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[23]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[24]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[25]  John Langford,et al.  Cover trees for nearest neighbor , 2006, ICML.

[26]  Maja J. Mataric,et al.  A spatio-temporal extension to Isomap nonlinear dimension reduction , 2004, ICML.

[27]  Ahmed M. Elgammal,et al.  Separating style and content on a nonlinear manifold , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[28]  Geoffrey E. Hinton,et al.  Global Coordination of Local Linear Models , 2001, NIPS.

[29]  Gene H. Golub,et al.  Matrix computations , 1983 .

[30]  Jose A. Costa,et al.  Manifold learning using Euclidean k-nearest neighbor graphs [image processing examples] , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[31]  Adam Krzyzak,et al.  Learning and Design of Principal Curves , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Stan Z. Li,et al.  Nonlinear mapping from multi-view face patterns to a Gaussian distribution in a low dimensional space , 2001, Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems.

[33]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[34]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[35]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[37]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[38]  Anil K. Jain,et al.  Nonlinear Manifold Learning for Data Stream , 2004, SDM.

[39]  David G. Stork,et al.  Pattern Classification , 1973 .

[40]  Garrison W. Cottrell,et al.  Non-Linear Dimensionality Reduction , 1992, NIPS.

[41]  Hongyuan Zha,et al.  Isometric Embedding and Continuum ISOMAP , 2003, ICML.

[42]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[43]  Anil K. Jain,et al.  Artificial neural networks for feature extraction and multivariate data projection , 1995, IEEE Trans. Neural Networks.

[44]  Olli Silven,et al.  Comparison of dimensionality reduction methods for wood surface inspection , 2003, International Conference on Quality Control by Artificial Vision.

[45]  Stan Z. Li,et al.  Nearest manifold approach for face recognition , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[46]  T. Hastie,et al.  Principal Curves , 2007 .

[47]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[48]  Kai-Yeung Siu,et al.  New dynamic algorithms for shortest path tree computation , 2000, TNET.

[49]  Gerald Sommer,et al.  Intrinsic Dimensionality Estimation With Optimally Topology Preserving Maps , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  I. Hassan Embedded , 2005, The Cyber Security Handbook.

[51]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..