Transformation of higher-order optical vortices upon focusing by an astigmatic lens

Abstract A circular Laguerre–Gaussian mode transformation by an astigmatic lens is considered theoretically as an example of the higher-order optical vortex symmetry breakdown. Behind the lens, an m-charged optical vortex converts into ∣m∣ secondary first-order vortices whose evolution upon the beam propagation has been studied. In the beam cross section, they are positioned on a straight line crossing the beam axis. Orientation of this straight line is determined by the direction of the energy circulation within the incident beam. Depending on the parameters of the beam and the lens, in certain cross-sections all the secondary vortices can invert their signs; and in these sections (inversion planes) ∣m∣ edge dislocations (transverse vortices) appear. The morphology of secondary vortices is analyzed and the local orbital angular momentum of the nearest vicinity of an optical vortex core is shown to characterize the vortex anisotropy.

[1]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[2]  Y. Anan'ev,et al.  THEORY OF INTENSITY MOMENTS FOR ARBITRARY LIGHT BEAMS , 1994 .

[3]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[4]  M. Vasnetsov,et al.  Transversal optical vortex , 2001 .

[5]  Isaac Freund,et al.  Optical dislocation networks in highly random media , 1993 .

[6]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[7]  Mikhail V. Vasnetsov,et al.  Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system , 2002 .

[8]  Mark R. Dennis,et al.  Local properties and statistics of phase singularities in generic wavefields , 2001, Other Conferences.

[9]  Michael V. Berry,et al.  Paraxial beams of spinning light , 1998, Other Conferences.

[10]  M S Soskin,et al.  Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  R. Simon,et al.  Optical phase space, Wigner representation, and invariant quality parameters. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[13]  H. Rubinsztein-Dunlop,et al.  Laser beams with phase singularities , 1992 .

[14]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[15]  M. S. Soskin,et al.  Chapter 4 - Singular optics , 2001 .

[16]  L. Torner,et al.  Propagation and control of noncanonical optical vortices. , 2001, Optics letters.

[17]  E. Abramochkin,et al.  Beam transformations and nontransformed beams , 1991 .

[18]  Filippus S. Roux,et al.  Coupling of noncanonical optical vortices , 2004 .