Multiscale models of nuclear waste reprocessing : from the mesoscale to the plant-scale.

Nuclear waste reprocessing and nonproliferation models are needed to support the renaissance in nuclear energy. This report summarizes an LDRD project to develop predictive capabilities to aid the next-generation nuclear fuel reprocessing, in SIERRA Mechanics, Sandia’s high performance computing multiphysics code suite and Cantera, an open source software product for thermodynamics and kinetic modeling. Much of the focus of the project has been to develop a moving conformal decomposition finite element method (CDFEM) method applicable to mass transport at the water/oil droplet interface that occurs in the turbulent emulsion of droplets within the contactor. Contactor-scale models were developed using SIERRA Mechanics turbulence modeling capability. Unit operations occur at the column-scale where many contactors are connected in series. Population balance models

[1]  R. Rao,et al.  Modeling of Liquid-Liquid Extraction (LLE) Equilibria Using Gibbs Energy Minimization (GEM) for the System TBP–HNO3–UO2–H2O–Diluent , 2013 .

[2]  F. Gallaire,et al.  Interface-induced recirculation within a stationary microfluidic drop , 2012 .

[3]  Vivek V. Ranade,et al.  CFD Simulation of Annular Centrifugal Extractors , 2012 .

[4]  G. Wagner,et al.  Modeling Thermal Abuse in Transportation Batteries , 2012 .

[5]  Jyeshtharaj B. Joshi,et al.  Measurement of drop size characteristics in annular centrifugal extractors using phase Doppler particle analyzer (PDPA) , 2012 .

[6]  J.G.M. Winkelman,et al.  Hydrodynamic features of centrifugal contactor separators: Experimental studies on liquid hold-up, residence time distribution, phase behavior and drop size distributions , 2012 .

[7]  C. Roberts,et al.  Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces. , 2012, Lab on a chip.

[8]  S. Hysing,et al.  Mixed element FEM level set method for numerical simulation of immiscible fluids , 2012, J. Comput. Phys..

[9]  Liang Li,et al.  Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing. , 2011, Journal of the American Chemical Society.

[10]  Boning Li,et al.  An Interface-Fitted Finite Element Level Set Method with Application to Solidification and Solvation. , 2011, Communications in computational physics.

[11]  Thomas-Peter Fries,et al.  The extended finite element method for two-phase and free-surface flows: A systematic study , 2011, J. Comput. Phys..

[12]  W. Wall,et al.  An extended residual-based variational multiscale method for two-phase flow including surface tension , 2011 .

[13]  S. D. Hudson,et al.  Interfacial effects on droplet dynamics in Poiseuille flow , 2011 .

[14]  Valentina Preziosi,et al.  Droplet deformation under confined Poiseuille flow. , 2010, Advances in colloid and interface science.

[15]  M. F. Malone,et al.  Prediction of emulsion drop size distributions with population balance equation models of multiple drop breakage , 2010 .

[16]  S. D. Hudson Poiseuille flow and drop circulation in microchannels , 2010 .

[17]  Jyeshtharaj B. Joshi,et al.  Dispersed phase hold-up, effective interfacial area and Sauter mean drop diameter in annular centrifugal extractors , 2009 .

[18]  D. Kuzmin,et al.  Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .

[19]  T. Fries,et al.  On time integration in the XFEM , 2009 .

[20]  David R. Noble,et al.  A conformal decomposition finite element method for modeling stationary fluid interface problems , 2009 .

[21]  Guillaume Houzeaux,et al.  The fixed-mesh ALE approach for the numerical approximation of flows in moving domains , 2009, J. Comput. Phys..

[22]  P. Rohr,et al.  Liquid mixing in gas–liquid two-phase flow by meandering microchannels , 2009 .

[23]  L. Prat,et al.  Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow , 2008 .

[24]  Jianhong Xu,et al.  Enhancement of mass transfer performance of liquid–liquid system by droplet flow in microchannels , 2008 .

[25]  L. Prat,et al.  Hydrodynamic structures of droplets engineered in rectangular micro-channels , 2008 .

[26]  V. Studer,et al.  Microfluidic droplet-based liquid-liquid extraction. , 2008, Analytical chemistry.

[27]  T. Danner,et al.  Emulsification in turbulent flow 2. Breakage rate constants. , 2007, Journal of colloid and interface science.

[28]  Thomas Danner,et al.  Emulsification in turbulent flow: 3. Daughter drop-size distribution. , 2007, Journal of colloid and interface science.

[29]  Ronan Grimes,et al.  PIV measurements of flow within plugs in a microchannel , 2007 .

[30]  K. Jensen,et al.  Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. , 2006, Lab on a chip.

[31]  M. F. Malone,et al.  Self-similar inverse population balance modeling for turbulently prepared batch emulsions: Sensitivity to measurement errors , 2006 .

[32]  W. Zimmerman,et al.  Simulations of mass transfer limited reaction in a moving droplet to study transport limited characteristics , 2006 .

[33]  Ross E. Swaney,et al.  Computational Fluid Dynamics (CFD) Study of the Flow in an Annular Centrifugal Contactor , 2006 .

[34]  Takashi Korenaga,et al.  Quantitative extraction using flowing nano-liter droplet in microfluidic system , 2006 .

[35]  S. D. Hudson,et al.  Microfluidic interfacial tensiometry , 2005 .

[36]  A. Smolianski Finite‐element/level‐set/operator‐splitting (FELSOS) approach for computing two‐fluid unsteady flows with free moving interfaces , 2005 .

[37]  A J Karabelas,et al.  On the self-similar solution of fragmentation equation: Numerical evaluation with implications for the inverse problem. , 2005, Journal of colloid and interface science.

[38]  M. N. Kashid,et al.  Internal Circulation within the Liquid Slugs of a Liquid-Liquid Slug-Flow Capillary Microreactor , 2005 .

[39]  V. Cristini,et al.  Theory and numerical simulation of droplet dynamics in complex flows--a review. , 2004, Lab on a chip.

[40]  Zhilin Li,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[41]  V. Cristini,et al.  Drop breakup and fragment size distribution in shear flow , 2003 .

[42]  N. Harries,et al.  A numerical model for segmented flow in a microreactor , 2003 .

[43]  T. Papanastasiou,et al.  Viscous Fluid Flow , 1999 .

[44]  J. Degrève,et al.  The interaction of solute transfer, contaminants and drop break-up in rotating disc contactors : Part I. Correlation of drop breakage probabilities , 1997 .

[45]  D. Ramkrishna,et al.  Maximum stable drop diameter in stirred dispersions , 1996 .

[46]  Rekha Ranjana Rao,et al.  A Newton-Raphson Pseudo-Solid Domain Mapping Technique for Free and Moving Boundary Problems , 1996 .

[47]  D. Ramkrishna,et al.  Solution of inverse problems in population balances. II: Particle break-up , 1995 .

[48]  Ali Nadim,et al.  The Motion of Small Particles and Droplets in Quadratic Flows , 1991 .

[49]  K. Udell,et al.  Axisymmetric creeping motion of drops through circular tubes , 1990, Journal of Fluid Mechanics.

[50]  Ralph A. Leonard,et al.  Recent Advances in Centrifugal Contactor Design , 1988 .

[51]  G. Vandegrift,et al.  A Thermodynamic Model of Nitric Acid Extraction by Tri- n -Butyl Phosphate , 1988 .

[52]  M. Pilch,et al.  Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop , 1987 .

[53]  R. Calabrese,et al.  Drop breakup in turbulent stirred‐tank contactors. Part III: Correlations for mean size and drop size distribution , 1986 .

[54]  George Sugihara,et al.  Moments of particle size distributions under sequential breakage with applications to species abundance , 1983, Journal of Applied Probability.

[55]  P. Danesi,et al.  The Kinetics of Metal Solvent Extraction , 1980 .

[56]  H. C. Simpson Bubbles, drops and particles , 1980 .

[57]  L. G. Leal,et al.  The motion of a deformable drop in a second-order fluid , 1979, Journal of Fluid Mechanics.

[58]  J. Alstad,et al.  Synergistic solvent extraction of rare-earth metal ions with thenoyltrifluoroacetone admixed with tributylphosphate , 1974 .

[59]  Taehun Lee,et al.  Finite element lattice Boltzmann simulations of free surface flow in a concentric cylinder , 2013, Comput. Math. Appl..

[60]  P. Dimitrakopoulos,et al.  Low-Reynolds-number droplet motion in a square microfluidic channel , 2012 .

[61]  Swati Mohanty,et al.  MODELING OF LIQUID-LIQUID EXTRACTION COLUMN: A REVIEW , 2000 .

[62]  R. Leonard,et al.  The centrifugal contactor as a concentrator in solvent extraction processes , 1993 .

[63]  W. Nitsch,et al.  The kinetics of coextraction in the system uranylnitrate, nitric acid, tributylphosphate , 1983 .

[64]  L. E. Johns,et al.  Mechanism of dispersed‐phase mass transfer in viscous, single‐drop extraction systems , 1966 .

[65]  R. Kronig,et al.  On the theory of extraction from falling droplets II , 1951 .