Palaeoenvironments of the late Triassic Rhaetian Sea: Implications from oxygen and strontium isotopes of hybodont shark teeth

The oxygen and strontium isotopic composition of 125 teeth of the hybodont sharks Lissodus and Hybodus from various late Triassic (Rhaetian) bone bed localities in the Central European Basin are used as environmental and ecological tracers for the shallow epicontinental Rhaetian Sea. The preservation of tooth enameloid was ascertained by cathodoluminescence microscopy. Mean δ18OP values differ regionally across the Rhaetian Sea with values of 18.6 ± 0.6‰ near the western gate, 16.1 ± 0.8‰ in the east, 15.4 ± 0.6‰ in the southeast, and 17.7 ± 0.9‰ in the south. The δ18OP values in the eastern Rhaetian Sea are 4–5‰ lower relative to Tethyan seawater, while teeth from the southern and western parts close to the marine gates are less fractionated. The strontium isotopic composition of teeth from most localities is more radiogenic in comparison to late Triassic seawater. The observed spatial δ18OP trend in the Rhaetian Sea indicates a shift from marine to brackish conditions in the south and west towards extensively brackish conditions with salinities of less than 16‰ in the east, thus confirming the existence of two marine gates. Brackish conditions persisted throughout early Rhaetian times, and were maintained by increased fluvial discharge from the Vindelician–Bohemian and Fennoscandian Highs as a result of enhanced atmospheric moisture availability in the course of the Rhaetian transgression. The δ18OP values of Lissodus and Hybodus indicate euryhaline behaviour of Rhaetian hybodonts by exceeding modern shark intraspecific variability. The lack of accordance in δ18OP values between different isotopically conspicuous localities in the Rhaetian Sea contradicts a basin-wide migration pattern. Differences between co-site taxa might indicate some degree of niche partitioning.

[1]  A. Ruffell,et al.  Biotic and climatic changes in the Carnian Triassic of Europe and adjacent areas , 1994 .

[2]  E. Martin,et al.  Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news , 2004 .

[3]  J. E. Portlock Report on the Geology of the county of Londonderry, and of Tyrone and Fermanagh , 1843 .

[4]  M. Buchwitz,et al.  A Selachian Freshwater Fauna from the Triassic of Kyrgyzstan and Its Implication for Mesozoic Shark Nurseries , 2011 .

[5]  A. Marca,et al.  The oxygen isotope composition of water masses within the North Sea , 2008 .

[6]  P. Bitter,et al.  Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite , 2006 .

[7]  B. Williams,et al.  Triassic palaeogeography and fluvial dispersal across the northwest European Basins , 2009 .

[8]  G. Storrs Fossil vertebrate faunas of the British Rhaetian (latest Triassic) , 1994 .

[9]  M. Benton,et al.  Triassic environments, climates and reptile evolution , 1982 .

[10]  B. Reynard,et al.  Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions , 1999 .

[11]  A. Hallam,et al.  Salinity reduction of the end‐Triassic sea from the Alpine region into northwestern Europe , 1982 .

[12]  G. Beutler,et al.  Extremely distal fluvial sandstone within the playa system of Arnstadt Formation (Norian, Late Triassic), Central Germany , 2006 .

[13]  A. Colman,et al.  Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4 , 2002 .

[14]  R. Howarth,et al.  Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr‐Isotope Curve for 0–509 Ma and Accompanying Look‐up Table for Deriving Numerical Age , 2001, The Journal of Geology.

[15]  A. Mariotti,et al.  Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel , 2004 .

[16]  J. Bryant,et al.  Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate , 1996 .

[17]  M. Kohn,et al.  Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y , 2001 .

[18]  T. Anderson,et al.  Stable Isotopes of Oxygen and Carbon and their Application to Sedimentologic and Paleoenvironmental Problems , 1983 .

[19]  P. Forey,et al.  87Sr/86Sr, Na, F, Sr, and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats , 1991 .

[20]  A. Shemesh Crystallinity and diagenesis of sedimentary apatites , 1990 .

[21]  C. Lécuyer,et al.  Deciphering ``temperature'' and ``salinity'' from biogenic phosphates: the δ18O of coexisting fishes and mammals of the Middle Miocene sea of western France , 1996 .

[22]  L. Nielsen,et al.  Late Triassic - Jurassic development of the Danish Basin and the Fennoscandian Border Zone, southern Scandinavia , 2003 .

[23]  T. Vennemann,et al.  Fossil bones and teeth: Preservation or alteration of biogenic compositions? , 2011 .

[24]  D. Guy-Ohlson,et al.  Onshore climate change during the Late Triassic marine inundation of the Central European Basin , 2002 .

[25]  H. Sues,et al.  Triassic Life on Land: The Great Transition , 2010 .

[26]  T. Bürgin,et al.  Zähne und Kieferreste der Gattung Birgeria (Osteichthyes, Actinopterygii) aus der ostalpinen Obertrias der Bergüner Stöcke (Kanton Graubünden, Schweiz) , 1992 .

[27]  L. Tanner,et al.  Calcareous paleosols of the Upper Triassic Chinle Group, Four Corners region, southwestern United States: Climatic implications , 2006 .

[28]  W. Ricken,et al.  The stratigraphic and geochemical record of Playa Cycles: monitoring a Pangaean monsoon-like system (Triassic, Middle Keuper, S. Germany) , 2000 .

[29]  F. Albarède,et al.  The assessment of REE patterns and 143Nd/144Nd ratios in fish remains , 1987 .

[30]  W. White,et al.  Elasmobranchs of Tropical Marine Ecosystems , 2010 .

[31]  A. Mariotti,et al.  Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions , 2004 .

[32]  P. Doyle,et al.  Sr and Nd isotope systematics in fish teeth , 1985 .

[33]  A. Hofmann,et al.  Cyclicity of Triassic to Lower Jurassic continental red beds of the Argana Valley, Morocco: implications for palaeoclimate and basin evolution , 2000 .

[34]  M. Rafélis,et al.  Cathodoluminescence tools provide clues to depositional history in Miocene and Pliocene mammalian teeth , 2008 .

[35]  M. Kohn,et al.  Stable isotope compositions of biological apatite , 2002 .

[36]  C. Holmden,et al.  Paleosalinities in ancient brackish water systems determined by 87Sr/86Sr ratios in carbonate fossils: A case study from the Western Canada sedimentary basin , 1997 .

[37]  C. Bogey,et al.  Stable isotope composition and rare earth element content of vertebrate remains from the Late Cretaceous of northern Spain (Laño): did the environmental record survive? , 2003 .

[38]  M. Kohn,et al.  Paleoaltimetry from Stable Isotope Compositions of Fossils , 2007 .

[39]  F. Jenkins,et al.  A Late Triassic lake system in East Greenland: facies, depositional cycles and palaeoclimate , 1998 .

[40]  R. Flecker,et al.  Modelling the effect of evaporation on the salinity- 87 Sr/ 86 Sr relationship in modern and ancient marginal-marine systems: the Mediterranean Messinian Salinity Crisis , 2002 .

[41]  M. Brunet,et al.  Freshwater fish δ18O indicates a Messinian change of the precipitation regime in Central Africa , 2011 .

[42]  E. Buffetaut,et al.  Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods , 2010 .

[43]  D. Beerling,et al.  Fossil Plants and Global Warming at the Triassic-Jurassic Boundary. , 1999, Science.

[44]  E. Buffetaut,et al.  Oxygen isotope composition of continental vertebrate apatites from Mesozoic formations of Thailand; environmental and ecological significance , 2009 .

[45]  J. Müller,et al.  Systematische Beschreibung der Plagiostomen , 1841 .

[46]  K. Jochum,et al.  Timescales and mechanisms of REE and Hf uptake in fossil bones , 2011 .

[47]  B. Schmitz,et al.  Testing 87Sr/86Sr as a paleosalinity indicator on mixed marine, brackish-water and terrestrial vertebrate skeletal apatite in late Paleocene-early Eocene near-coastal sediments, Mississippi , 1997 .

[48]  Louis Agassiz Recherches sur les poissons fossiles , 1833 .

[49]  A. Stephan,et al.  High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses , 2000 .

[50]  E. Buffetaut,et al.  Regulation of Body Temperature by Some Mesozoic Marine Reptiles , 2010, Science.

[51]  Shing Yip Lee,et al.  A multi-faceted approach for quantifying the estuarine-nearshore transition in the life cycle of the bull shark, Carcharhinus leucas , 2011 .

[52]  M. Talbot,et al.  Sedimentation in low-gradient desert margin systems: A comparison of the Late Triassic of northwest Somerset (England) and the late Quaternary of east-central Australia , 1994 .

[53]  D. Evans,et al.  The millennium atlas : petroleum geology of the central and northern North Sea , 2003 .

[54]  L. Reisberg,et al.  Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites , 2009 .

[55]  E. Hegner,et al.  Oxygen, strontium, and neodymium isotope composition of fossil shark teeth as a proxy for the palaeoceanography and palaeoclimatology of the Miocene northern Alpine Paratethys , 1998 .

[56]  Ingela Olsson,et al.  Triassic-Jurassic weathering and clay mineral dispersal in basement areas and sedimentary basins of southern Sweden , 2003 .

[57]  Michael Gaft,et al.  Luminescence of uranium and rare-earth elements in apatite of fossil fish teeth , 1996 .

[58]  Daniel C Simkins,et al.  Biology meets engineering: The structural mechanics of fossil and extant shark teeth , 2011, Journal of morphology.

[59]  M. Joachimski,et al.  Devonian climate and reef evolution: Insights from oxygen isotopes in apatite , 2009 .

[60]  M. Franz Litho- und Leitflächenstratigraphie, Chronostratigraphie, Zyklo- und Sequenzstratigraphie des Keupers im östlichen zentraleuropäischen Becken (Deutschland, Polen) und dänischen Becken (Dänemark, Schweden) , 2008 .

[61]  Y. Kolodny,et al.  Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game , 1983 .

[62]  E. Hegner,et al.  Constraints on Miocene oceanography and climate in the Western and Central Paratethys: O-, Sr-, and Nd-isotope compositions of marine fish and mammal remains , 2009 .

[63]  U. Kempe,et al.  Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits , 2002, Mineralogical Magazine.

[64]  Gavin A. Schmidt,et al.  Global gridded data set of the oxygen isotopic composition in seawater , 2006 .

[65]  M. Kohn,et al.  Altered states: effects of diagenesis on fossil tooth chemistry , 1999 .

[66]  Jurgen Neuberg,et al.  Unprecedented pressure increase in deep magma reservoir triggered by lava‐dome collapse , 2006 .

[67]  C. Robin,et al.  Three-dimensional accommodation analysis of the Keuper of the Paris Basin: discrimination between tectonics, eustasy and sediment supply in the stratigraphic record , 2002 .

[68]  M. Chiaradia,et al.  Latest Triassic marine Sr isotopic variations, possible causes and implications , 2012 .

[69]  M. Erlström,et al.  The late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic–Jurassic boundary , 2006 .

[70]  A. Bonin,et al.  Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite , 2010 .

[71]  C. Martínez-Pérez,et al.  Tooth replacement rates in early chondrichthyans: a qualitative approach , 2009 .

[72]  J. Ballantyne,et al.  Freshwater elasmobranchs: a review of their physiology and biochemistry , 2010, Journal of Comparative Physiology B.

[73]  L. Kocsis,et al.  Migration of sharks into freshwater systems during the Miocene and implications for Alpine paleoelevation. , 2007 .

[74]  H. Pfeifer,et al.  Rare earth elements and stable isotope geochemistry (δ13C and δ18O) of phosphorite deposits in the Gafsa Basin, Tunisia , 2008 .

[75]  T. Aigner,et al.  RESERVOIR ARCHITECTURE IN A TERMINAL ALLUVIAL PLAIN: AN OUTCROP ANALOGUE STUDY (UPPER TRIASSIC, SOUTHERN GERMANY) PART II: CYCLICITY, CONTROLS AND MODELS , 2002 .

[76]  P. Olsen STRATIGRAPHIC RECORD OF THE EARLY MESOZOIC BREAKUP OF PANGEA IN THE LAURASIA-GONDWANA RIFT SYSTEM , 1997 .

[77]  C. Korte,et al.  Strontium isotope evolution of Late Permian and Triassic seawater , 2003 .

[78]  H. Kozur,et al.  Europe from the Variscan to the Alpine cycles , 2006, Geological Society, London, Memoirs.

[79]  N. Tougiannidis,et al.  Orbital control on Upper Triassic Playa cycles of the Steinmergel-Keuper (Norian): A new concept for ancient playa cycles , 2008 .

[80]  G. Benz,et al.  Isotopic composition of recent shark teeth as a proxy for environmental conditions , 2001 .

[81]  G. Price,et al.  A carbon and oxygen isotopic analysis of molluscan faunas from the Callovian-Oxfordian boundary at Redcliff Point, Weymouth, Dorset: implications for belemnite behaviour , 2008 .

[82]  A. Colman,et al.  Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[83]  L. Stemmerik,et al.  North Atlantic marine rifting in the Early Triassic: new evidence from East Greenland , 2004, Journal of the Geological Society.

[84]  L. M. Walter,et al.  Sr isotopic composition of hydroxyapatite from recent and fossil salmon : the record of lifetime migration and diagenesis , 1992 .

[85]  D. Kent,et al.  Magnetic polarity stratigraphy and paleolatitude of the Triassic^Jurassic Blomidon Formation in the Fundy basin (Canada): implications for early Mesozoic tropical climate gradients , 2000 .

[86]  M. Joachimski,et al.  Palaeoecology of Late Triassic Conodonts: Constraints from Oxygen Isotopes in Biogenic Apatite , 2010 .

[87]  J. Golonka,et al.  Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies , 2000 .

[88]  C. Korte,et al.  δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature , 2005 .

[89]  P. Koch,et al.  Isotopic Study of the Biology of Modern and Fossil Vertebrates , 2008 .

[90]  Z. Sharp,et al.  THE EFFECT OF DIAGENESIS ON OXYGEN ISOTOPE RATIOS OF BIOGENIC PHOSPHATES , 2000 .

[91]  E. Grossman,et al.  Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation , 1999 .

[92]  E. Simons,et al.  Stable isotope evidence for an amphibious phase in early proboscidean evolution , 2008, Proceedings of the National Academy of Sciences.

[93]  C. Trueman,et al.  Palaeoenvironmental implications of the ichnology and geochemistry of the Westbury Formation (Rhaetian), Westbury‐on‐Severn, south‐west England , 2010 .

[94]  A. Gale,et al.  Surface-water freshening and high-latitude river discharge in the Eocene North Sea , 2009, Journal of the Geological Society.

[95]  Kristian Remes,et al.  Biology of the Sauropod Dinosaurs: Understanding the Life of Giants , 2011 .

[96]  K. Föllmi,et al.  Major environmental change and bonebed genesis prior to the Triassic–Jurassic mass extinction , 2012, Journal of the Geological Society.

[97]  M. Heupel,et al.  Habitat use and movement patterns of bull sharks Carcharhinus leucas determined using pop-up satellite archival tags. , 2010, Journal of fish biology.

[98]  P. A. Ziegler,et al.  Geological atlas of Western and Central Europe , 1969 .

[99]  C. Pin,et al.  Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials , 1992 .

[100]  O. Wings,et al.  A Late Jurassic freshwater shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin, Xinjiang, Northwest China , 2010, Palaeobiodiversity and Palaeoenvironments.

[101]  M. Benton,et al.  A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings , 1997 .

[102]  A. Ruffell,et al.  The control of sedimentary facies by climate during phases of crustal extension: examples from the Triassic of onshore and offshore England and Northern Ireland , 1999, Journal of the Geological Society.

[103]  P. Valdes,et al.  Mesozoic climates: General circulation models and the rock record , 2006 .

[104]  T. D. Brock Life at High Temperatures , 1985, Science.

[105]  M. Ginter Chondrichthyes: Paleozoic Elasmobranchii, Teeth , 2010 .

[106]  A. Nützel,et al.  Seasonal climatic fluctuations in the Late Triassic tropics—High-resolution oxygen isotope records from aragonitic bivalve shells (Cassian Formation, Northern Italy) , 2010 .

[107]  K. Campbell,et al.  Strontium–Isotope Evidence for Marine or Freshwater Origin of Fossil Dipnoans and Arthrodires , 1970, Nature.

[108]  G. Cuny French vertebrate faunas and the Triassic-Jurassic boundary , 1996 .

[109]  A. Ruffell,et al.  Climatic and biotic change in the late Triassic , 1990, Journal of the Geological Society.

[110]  Y. Kolodny,et al.  Oxygen isotopes in phosphatic fish remains from Israel: Paleothermometry of tropical cretaceous and tertiary shelf waters , 1988 .

[111]  A. Longinelli,et al.  Oxygen isotope measurements of phosphate from fish teeth and bones , 1973 .

[112]  A. Wetzel,et al.  The Staffelegg Formation: a new stratigraphic scheme for the Early Jurassic of northern Switzerland , 2011 .

[113]  H. Falcon-Lang Small cordaitalean trees in a marine-influenced coastal habitat in the Pennsylvanian Joggins Formation, Nova Scotia , 2005, Journal of the Geological Society.

[114]  Jan Fischer,et al.  New Hybondontoid Shark from the Permocarboniferous (Gzhelian—Asselian) of Guardia Pisano (Sardinia, Italy) , 2010 .