Direct Isosurface Visualization of Hex-Based High-Order Geometry and Attribute Representations

In this paper, we present a novel isosurface visualization technique that guarantees the accurate visualization of isosurfaces with complex attribute data defined on (un)structured (curvi)linear hexahedral grids. Isosurfaces of high-order hexahedral-based finite element solutions on both uniform grids (including MRI and CT scans) and more complex geometry representing a domain of interest that can be rendered using our algorithm. Additionally, our technique can be used to directly visualize solutions and attributes in isogeometric analysis, an area based on trivariate high-order NURBS (Non-Uniform Rational B-splines) geometry and attribute representations for the analysis. Furthermore, our technique can be used to visualize isosurfaces of algebraic functions. Our approach combines subdivision and numerical root finding to form a robust and efficient isosurface visualization algorithm that does not miss surface features, while finding all intersections between a view frustum and desired isosurfaces. This allows the use of view-independent transparency in the rendering process. We demonstrate our technique through a straightforward CPU implementation on both complex-structured and complex-unstructured geometries with high-order simulation solutions, isosurfaces of medical data sets, and isosurfaces of algebraic functions.

[1]  Bruno Lévy,et al.  Iterative Methods for Visualization of Implicit Surfaces On GPU , 2007, ISVC.

[2]  Pat Hanrahan,et al.  Beam tracing polygonal objects , 1984, SIGGRAPH.

[3]  Xianming Chen,et al.  Sliding windows algorithm for B-spline multiplication , 2007, Symposium on Solid and Physical Modeling.

[4]  Charles T. Loop,et al.  Real-time GPU rendering of piecewise algebraic surfaces , 2006, ACM Trans. Graph..

[5]  Robert J. Holt,et al.  Rational parametrizations of nonsingular real cubic surfaces , 1998, TOGS.

[6]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[7]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[8]  Hong Qin,et al.  Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines , 2004, SM '04.

[9]  Ross T. Whitaker,et al.  Particle Systems for Efficient and Accurate High-Order Finite Element Visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[10]  James T. Kajiya,et al.  Ray tracing parametric patches , 1982, SIGGRAPH.

[11]  Elaine Cohen,et al.  Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework , 2001, SMA '01.

[12]  Hans Hagen,et al.  Interactive Ray Tracing of Arbitrary Implicit Functions , 2007 .

[13]  Frank Zeilfelder,et al.  Hardware‐Accelerated, High‐Quality Rendering Based on Trivariate Splines Approximating Volume Data , 2008, Comput. Graph. Forum.

[14]  John Amanatides,et al.  Ray tracing with cones , 1984, SIGGRAPH.

[15]  I. Wald,et al.  Ray tracing with the BSP tree , 2008, 2008 IEEE Symposium on Interactive Ray Tracing.

[16]  Peter Shirley,et al.  Ray Tracing with the BSP Tree , 1992, Graphics Gems III.

[17]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[18]  Robert Michael Kirby,et al.  Ray-tracing polymorphic multidomain spectral/hp elements for isosurface rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[20]  Marc Olano,et al.  Interactive volume isosurface rendering using BT volumes , 2008, I3D '08.

[21]  Jörg Peters,et al.  Box Spline Reconstruction On The Face-Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[22]  Afonso Paiva,et al.  Robust adaptive meshes for implicit surfaces , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[23]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[24]  O. Abert,et al.  Direct and Fast Ray Tracing of NURBS Surfaces , 2006, 2006 IEEE Symposium on Interactive Ray Tracing.

[25]  Cláudio T. Silva,et al.  High-Quality Extraction of Isosurfaces from Regular and Irregular Grids , 2006, IEEE Transactions on Visualization and Computer Graphics.

[26]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[27]  M. Marsden An identity for spline functions with applications to variation-diminishing spline approximation☆ , 1970 .

[28]  Martin Reimers,et al.  Ray Casting Algebraic Surfaces using the Frustum Form , 2008, Comput. Graph. Forum.

[29]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[30]  Thomas W. Sederberg,et al.  Pyramids That Bound Surface Patches , 1996, CVGIP Graph. Model. Image Process..

[31]  Gershon Elber,et al.  Interactive Direct Rendering of Trivariate B-Spline Scalar Functions , 2001, IEEE Trans. Vis. Comput. Graph..

[32]  Tomoyuki Nishita,et al.  Ray tracing trimmed rational surface patches , 1990, SIGGRAPH.

[33]  I. Wald,et al.  Interactive Isosurface Ray Tracing of Large Octree Volumes , 2006, 2006 IEEE Symposium on Interactive Ray Tracing.

[34]  Leila De Floriani,et al.  Multiresolution modeling and visualization of volume data based on simplicial complexes , 1994, VVS '94.

[35]  Michael S. Blum Modeling the Film Hierarchy in Computer Animation Final Reading Approval Approved for the Major Department , 1992 .

[36]  Ramsay Dyer,et al.  Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.

[37]  Brian Wyvill,et al.  RAY TRACING IMPLICIT SURFACES , 1988 .

[38]  Peter Shirley,et al.  Fundamentals of computer graphics , 2018 .

[39]  Flórez Díaz,et al.  Improvements in the ray tracing of implicit surfaces based on interval arithmetic , 2008 .

[40]  Jane Wilhelms,et al.  DIRECT VOLUME RENDERING VIA 3D TEXTURES , 1994 .

[41]  Hans-Peter Seidel,et al.  Robust and numerically stable Bézier clipping method for ray tracing NURBS surfaces , 2005, SCCG '05.

[42]  John Hart,et al.  Ray Tracing Implicit Surfaces , 1993 .

[43]  H. Hagen,et al.  Interactive Ray Tracing of Arbitrary Implicits with SIMD Interval Arithmetic , 2007, 2007 IEEE Symposium on Interactive Ray Tracing.

[44]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[45]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[46]  Daniel L. Toth,et al.  On ray tracing parametric surfaces , 1985, SIGGRAPH.

[47]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[48]  Rudolf Krawczyk,et al.  Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken , 1969, Computing.