Linear and nonlinear ion-acoustic waves in an unmagnetized electron-positron-ion quantum plasma

The linear and nonlinear properties of the ion-acoustic waves (IAWs) are investigated by using the quantum hydrodynamic equations together with the Poisson equation in a three-component quantum electron-positron-ion plasma. For this purpose, a linear dispersion relation, a Korteweg-de Vries equation and an energy equation containing quantum corrections are derived. Computational investigations have been performed to examine the quantum mechanical effects on the linear and nonlinear waves. It is found that both the linear and nonlinear properties of the IAWs are significantly affected by the inclusion of the quantum corrections. The relevance of the present investigation to dense white dwarfs (where the electron-positron annihilation can be unimportant) is discussed.

[1]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[2]  F. Haas,et al.  Modified Zakharov equations for plasmas with a quantum correction , 2004, physics/0410251.

[3]  P. Bertrand,et al.  Numerical simulation of the quantum Liouville-Poisson system , 1991 .

[4]  B. Shokri,et al.  Quantum surface wave on a thin plasma layer , 1999 .

[5]  P. Shukla,et al.  Nonlinear collective effects in photon-photon and photon-plasma interactions , 2006 .

[6]  M. Yu,et al.  Finite amplitude envelope solitons , 1977 .

[7]  P. Shukla,et al.  Formation and dynamics of dark solitons and vortices in quantum electron plasmas. , 2006, Physical review letters.

[8]  Dynamics of spin-1/2 quantum plasmas. , 2006, Physical review letters.

[9]  P. Shukla A new dust mode in quantum plasmas , 2006 .

[10]  N. Woolsey,et al.  Laboratory plasma astrophysics simulation experiments using lasers , 2004 .

[11]  P. Shukla,et al.  Dust acoustic waves in quantum plasmas , 2005 .

[12]  Dietrich Marcuse,et al.  Formal Quantum Theory of Light Rays , 1969 .

[13]  Dean E. Dauger,et al.  Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes , 2001, astro-ph/0105153.

[14]  M. Marklund Classical and quantum kinetics of the Zakharov system , 2005 .

[15]  Quantum corrected electron holes , 2003, physics/0311126.

[16]  H. Washimi,et al.  ON THE PROPAGATION OF ION ACOUSTIC SOLITARY WAVES OF SMALL AMPLITUDE. , 1966 .

[17]  M. I. Loffredo,et al.  On the creation of quantized vortex lines in rotating He II , 1993 .

[18]  Young-Dae Jung,et al.  Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas , 2001 .

[19]  Shukla,et al.  Pair production in a strong wake field driven by an intense short laser pulse. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  M. Yu,et al.  Exact solitary ion acoustic waves in a magnetoplasma , 1978 .

[21]  P. Shukla,et al.  Dust acoustic solitary waves in a quantum plasma , 2006 .

[22]  R. Sagdeev The 1976 Oppenheimer lectures: Critical problems in plasma astrophysics. II. Singular layers and reconnection , 1979 .

[23]  F. Douchin,et al.  Dense astrophysical plasmas , 2002, physics/0211089.

[24]  D. Pines Classical and quantum plasmas , 1961 .

[25]  B. Shokri,et al.  Quantum drift waves , 1999 .

[26]  R. Sagdeev The 1976 Oppenheimer lectures: Critical problems in plasma astrophysics. I. Turbulence and nonlinear waves , 1979 .

[27]  L. Stenflo,et al.  Shielding of a slowly moving test charge in a quantum plasma , 2006 .

[28]  F. Haas,et al.  Quantum ion-acoustic waves , 2003 .

[29]  R. Svensson Electron-Positron Pair Equilibria in Relativistic Plasmas , 1982 .

[30]  Manfredi,et al.  Theory and simulation of classical and quantum echoes. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  C. Schmeiser,et al.  Semiconductor equations , 1990 .