Physiology of neuronal–glial networking

[1]  A. Galione,et al.  NAADP receptors. , 2011, Cold Spring Harbor perspectives in biology.

[2]  E. Capes,et al.  Ryanodine receptors , 2011, Skeletal Muscle.

[3]  M. Sakuta [One hundred books which built up neurology (48)--Roberto Remak "Observationes anatomicae et microscopicae de systematis nervosi structura"]. , 2010, Brain and nerve = Shinkei kenkyu no shinpo.

[4]  B. Fredholm,et al.  Adenosine signaling and function in glial cells , 2010, Cell Death and Differentiation.

[5]  A. Volterra,et al.  Astrocytic dysfunction: Insights on the role in neurodegeneration , 2009, Brain Research Bulletin.

[6]  Pierre J Magistretti,et al.  Role of glutamate in neuron-glia metabolic coupling. , 2009, The American journal of clinical nutrition.

[7]  E. Mazzon,et al.  The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. , 2009, Brain : a journal of neurology.

[8]  Miguel Maravall,et al.  The Barrel Cortex as a Model to Study Dynamic Neuroglial Interaction , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[9]  G. Burnstock,et al.  Evolutionary origins of the purinergic signalling system , 2009, Acta physiologica.

[10]  G. Burnstock,et al.  Purinoceptors on Neuroglia , 2009, Molecular Neurobiology.

[11]  J. Ojemann,et al.  Uniquely Hominid Features of Adult Human Astrocytes , 2009, The Journal of Neuroscience.

[12]  R. North,et al.  Signaling at purinergic P2X receptors. , 2009, Annual review of physiology.

[13]  Geoffrey Burnstock,et al.  Purinergic signalling in the nervous system: an overview , 2009, Trends in Neurosciences.

[14]  Michael M. Halassa,et al.  Astrocytic Modulation of Sleep Homeostasis and Cognitive Consequences of Sleep Loss , 2009, Neuron.

[15]  A Verkhratsky,et al.  Neuronismo y reticulismo: neuronal–glial circuits unify the reticular and neuronal theories of brain organization , 2009, Acta physiologica.

[16]  G. Burnstock,et al.  Purinoceptors on Neuroglia , 2009, Molecular Neurobiology.

[17]  D. Hines,et al.  Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission , 2009 .

[18]  A. Nishiyama,et al.  Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity , 2009, Nature Reviews Neuroscience.

[19]  Alexei Verkhratsky,et al.  Neuroglia: the 150 years after , 2008, Trends in Neurosciences.

[20]  A. Reichenbach,et al.  A New Glance at Glia , 2008, Science.

[21]  Yun Lu,et al.  Glia Are Essential for Sensory Organ Function in C. elegans , 2008, Science.

[22]  Todd A Fiacco,et al.  What Is the Role of Astrocyte Calcium in Neurophysiology? , 2008, Neuron.

[23]  R. North,et al.  P2X1 and P2X5 Subunits Form the Functional P2X Receptor in Mouse Cortical Astrocytes , 2008, The Journal of Neuroscience.

[24]  C. Giaume,et al.  Gap Junction-Mediated Astrocytic Networks in the Mouse Barrel Cortex , 2008, The Journal of Neuroscience.

[25]  Frank Kirchhoff,et al.  Mechanisms of ATP‐ and glutamate‐mediated calcium signaling in white matter astrocytes , 2008, Glia.

[26]  Alfonso Araque,et al.  Astrocytes process synaptic information. , 2008, Neuron glia biology.

[27]  R. Jabs,et al.  Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region , 2007, Glia.

[28]  C. Iadecola,et al.  Glial regulation of the cerebral microvasculature , 2007, Nature Neuroscience.

[29]  H. Kettenmann,et al.  Microglia: active sensor and versatile effector cells in the normal and pathologic brain , 2007, Nature Neuroscience.

[30]  A. Verkhratsky,et al.  Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. , 2007, Cell calcium.

[31]  Ole H Petersen,et al.  Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells. , 2007, Cell calcium.

[32]  A. Verkhratsky,et al.  Glial Neurobiology: A Textbook , 2007 .

[33]  J. Putney Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). , 2007, Cell calcium.

[34]  C. Sahley,et al.  Reduced axon sprouting after treatment that diminishes microglia accumulation at lesions in the leech CNS , 2007, The Journal of comparative neurology.

[35]  F. Kirchhoff,et al.  Glutamate‐mediated neuronal–glial transmission , 2007, Journal of anatomy.

[36]  F. Kirchhoff,et al.  Glia: the fulcrum of brain diseases , 2007, Cell Death and Differentiation.

[37]  Salvatore Amoroso,et al.  Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. , 2007, Cell calcium.

[38]  Yuriy Pankratov,et al.  Quantal Release of ATP in Mouse Cortex , 2007, The Journal of general physiology.

[39]  H. Kettenmann,et al.  Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells , 2007, Pflügers Archiv - European Journal of Physiology.

[40]  F. Kirchhoff,et al.  NMDA Receptors in Glia , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[41]  Michael M. Halassa,et al.  The tripartite synapse: roles for gliotransmission in health and disease. , 2007, Trends in molecular medicine.

[42]  C. Lohr,et al.  Calcium signaling in invertebrate glial cells , 2006, Glia.

[43]  C. Giaume,et al.  Astrocyte calcium waves: What they are and what they do , 2006, Glia.

[44]  S. Duan,et al.  P2X7 receptors: Properties and relevance to CNS function , 2006, Glia.

[45]  Milos Pekny,et al.  Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury , 2006, Proceedings of the National Academy of Sciences.

[46]  S. Goldman,et al.  Astrocytic complexity distinguishes the human brain , 2006, Trends in Neurosciences.

[47]  A. Verkhratsky,et al.  Neuronal-glial networks as substrate for CNS integration , 2006, Journal of cellular and molecular medicine.

[48]  P. Hof,et al.  Evolution of increased glia–neuron ratios in the human frontal cortex , 2006, Proceedings of the National Academy of Sciences.

[49]  R. North,et al.  NMDA Receptors Mediate Neuron-to-Glia Signaling in Mouse Cortical Astrocytes , 2006, The Journal of Neuroscience.

[50]  A. Verkhratsky Calcium ions and integration in neural circuits , 2006, Acta physiologica.

[51]  S. Ceruti,et al.  Roles of P2 receptors in glial cells: focus on astrocytes , 2006, Purinergic Signalling.

[52]  A. Verkhratsky Patching the glia reveals the functional organisation of the brain , 2006, Pflügers Archiv.

[53]  P. Magistretti Neuron–glia metabolic coupling and plasticity , 2006, Journal of Experimental Biology.

[54]  G. Burnstock,et al.  Purinergic signalling in neuron–glia interactions , 2006, Nature Reviews Neuroscience.

[55]  R. North,et al.  Purinergic transmission in the central nervous system , 2006, Pflügers Archiv.

[56]  R. North,et al.  Vesicular release of ATP at central synapses , 2006, Pflügers Archiv.

[57]  S. Lipton NMDA Receptors, Glial Cells, and Clinical Medicine , 2006, Neuron.

[58]  Eric A Newman,et al.  Glial Cells Dilate and Constrict Blood Vessels: A Mechanism of Neurovascular Coupling , 2006, The Journal of Neuroscience.

[59]  B. Trapp,et al.  NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia , 2006, Nature.

[60]  T. Takano,et al.  Astrocyte-mediated control of cerebral blood flow , 2006, Nature Neuroscience.

[61]  Oliver Peters,et al.  Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. , 2006, Cerebral cortex.

[62]  Alexei Verkhratsky,et al.  Biophysical re‐equilibration of Ca2+ fluxes as a simple biologically plausible explanation for complex intracellular Ca2+ release patterns , 2006, FEBS letters.

[63]  C. Brosnan,et al.  P2X7 Receptors Mediate ATP Release and Amplification of Astrocytic Intercellular Ca2+ Signaling , 2006, The Journal of Neuroscience.

[64]  C. Brosnan,et al.  Mediate ATP Release and Amplification of Astrocytic Intercellular Ca 2 Signaling , 2006 .

[65]  D. Attwell,et al.  NMDA receptors are expressed in oligodendrocytes and activated in ischaemia , 2005, Nature.

[66]  M. Salter,et al.  NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury , 2005, Nature.

[67]  N. Hamilton,et al.  Synantocytes: the fifth element , 2005, Journal of anatomy.

[68]  W. Gibson,et al.  A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. , 2005, Biophysical journal.

[69]  D. Burdakov,et al.  Intraluminal calcium as a primary regulator of endoplasmic reticulum function. , 2005, Cell calcium.

[70]  A. Verkhratsky,et al.  Calcium signalling: past, present and future. , 2005, Cell calcium.

[71]  I. Bezprozvanny The inositol 1,4,5-trisphosphate receptors. , 2005, Cell calcium.

[72]  Alfonso Araque,et al.  Glial calcium signaling and neuron-glia communication. , 2005, Cell calcium.

[73]  P. D. Río-Hortega Lo que debe entenderse por «tercer elemento» de los centros nerviosos (Boletín de la Sociedad española de Biología. Vol. XI, fasc. 1, 1919) , 2005 .

[74]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[75]  U. Dirnagl,et al.  Role of glial cells in cerebral ischemia , 2005, Glia.

[76]  S. Gobbo,et al.  Neuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors , 2005, Neuron.

[77]  Alexei Verkhratsky,et al.  Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. , 2005, Physiological reviews.

[78]  Ikuko Miyazaki,et al.  Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia , 2004, Brain Research.

[79]  E. Scemes,et al.  Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation , 2004, Glia.

[80]  J. Deuchars,et al.  Electron microscopic localisation of P2X4 receptor subunit immunoreactivity to pre- and post-synaptic neuronal elements and glial processes in the dorsal vagal complex of the rat , 2004, Brain Research.

[81]  R. Swanson Astrocyte Neurotransmitter Uptake , 2004 .

[82]  B. MacVicar,et al.  Calcium transients in astrocyte endfeet cause cerebrovascular constrictions , 2004, Nature.

[83]  J. Grosche,et al.  P2X7 Receptor Expression after Ischemia in the Cerebral Cortex of Rats , 2004, Journal of neuropathology and experimental neurology.

[84]  E. Brand-Schieber,et al.  Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte–vessel interface , 2004, Brain Research.

[85]  Mark Ellisman,et al.  Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development , 2004, International Journal of Developmental Neuroscience.

[86]  R. Swanson,et al.  ATP‐induced ATP release from astrocytes , 2003, Journal of neurochemistry.

[87]  F. Kirchhoff,et al.  Kainate activates Ca2+-permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices , 1994, Pflügers Archiv.

[88]  Andreas Beck,et al.  Calcium release from intracellular stores in rodent astrocytes and neurons in situ. , 2004, Cell calcium.

[89]  R. Hooke Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses With Observations and Inquiries Thereupon , 2003 .

[90]  O. Krishtal,et al.  P2X receptor-mediated excitatory synaptic currents in somatosensory cortex , 2003, Molecular and Cellular Neuroscience.

[91]  S. Goldman,et al.  New roles for astrocytes: Redefining the functional architecture of the brain , 2003, Trends in Neurosciences.

[92]  B. Trapp,et al.  Depolarization-Induced Ca2+ Release in Ischemic Spinal Cord White Matter Involves L-type Ca2+ Channel Activation of Ryanodine Receptors , 2003, Neuron.

[93]  H. Parri,et al.  The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations , 2003, Neuroscience.

[94]  M. Matteoli,et al.  Nucleotide‐mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors , 2003, Glia.

[95]  A. Verkhratsky,et al.  Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones , 2003, Pflügers Archiv.

[96]  S. Ferroni,et al.  ATP‐induced, sustained calcium signalling in cultured rat cortical astrocytes: evidence for a non‐capacitative, P2X7‐like‐mediated calcium entry , 2003, FEBS letters.

[97]  S. Duan,et al.  P2X7 Receptor-Mediated Release of Excitatory Amino Acids from Astrocytes , 2003, The Journal of Neuroscience.

[98]  M. C. Angulo,et al.  Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation , 2003, Nature Neuroscience.

[99]  A. Verkhratsky,et al.  Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches , 2002, Journal of Neuroscience Methods.

[100]  L. Missiaen,et al.  Molecular physiology of the SERCA and SPCA pumps. , 2002, Cell calcium.

[101]  O. Petersen,et al.  The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. , 2002, European journal of pharmacology.

[102]  T. Takano,et al.  Intercellular calcium signaling mediated by point-source burst release of ATP , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[103]  O. Krishtal,et al.  Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato‐sensory cortex , 2002, The Journal of physiology.

[104]  L. Role,et al.  Coordinate Release of ATP and GABA at In VitroSynapses of Lateral Hypothalamic Neurons , 2002, The Journal of Neuroscience.

[105]  C. Naus,et al.  Intercellular Calcium Signaling in Astrocytes via ATP Release through Connexin Hemichannels* , 2002, The Journal of Biological Chemistry.

[106]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[107]  A. Verkhratsky,et al.  Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+‐induced Ca2+ release triggered by physiological Ca2+ entry , 2002 .

[108]  Clemens Boucsein,et al.  Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[109]  R. North Molecular physiology of P2X receptors. , 2002, Physiological reviews.

[110]  V. Matyash,et al.  Requirement of functional ryanodine receptor type 3 for astrocyte migration , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[111]  Mark Ellisman,et al.  Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomical Domains , 2002, The Journal of Neuroscience.

[112]  A. Verkhratsky,et al.  Calcium excitability of glial cells , 2002 .

[113]  A. Verkhratsky,et al.  Ca(2+) dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca(2+)-induced Ca(2+) release triggered by physiological Ca(2+) entry. , 2002, The EMBO journal.

[114]  J. Grosche,et al.  P2X receptor expression on astrocytes in the nucleus accumbens of rats , 2001, Neuroscience.

[115]  M. Kukley,et al.  Distribution of P2X receptors on astrocytes in juvenile rat hippocampus , 2001, Glia.

[116]  A. Butt,et al.  P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ. , 2001, Cell calcium.

[117]  N. Danbolt Glutamate uptake , 2001, Progress in Neurobiology.

[118]  R. Shigemoto,et al.  Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites , 2001, Neuroscience.

[119]  Ole Holger Petersen,et al.  The endoplasmic reticulum: one continuous or several separate Ca2+ stores? , 2001, Trends in Neurosciences.

[120]  H. Kettenmann,et al.  Astrocytes of the mouse neocortex express functional N‐methyl‐D‐aspartate receptors , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[121]  N. Tamaki,et al.  NMDA-responsible, APV-insensitive receptor in cultured human astrocytes. , 2001, Life sciences.

[122]  B. Khakh Molecular physiology of p2x receptors and atp signalling at synapses , 2001, Nature Reviews Neuroscience.

[123]  C. Steinhäuser,et al.  Ionotropic glutamate receptors in astrocytes. , 2001, Progress in brain research.

[124]  F. Kirchhoff,et al.  GFAP promoter‐controlled EGFP‐expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue , 2001, Glia.

[125]  G. Burnstock,et al.  P2X7 Receptors in Müller Glial Cells from the Human Retina , 2000, The Journal of Neuroscience.

[126]  F. D. da Silva,et al.  Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy , 2000, The European journal of neuroscience.

[127]  V. Gallo,et al.  Glutamate receptors in glia: new cells, new inputs and new functions. , 2000, Trends in pharmacological sciences.

[128]  C. Steinhäuser,et al.  Ion channels in glial cells , 2000, Brain Research Reviews.

[129]  R. Jabs,et al.  Evidence for P2X3, P2X4, P2X5 but not for P2X7 containing purinergic receptors in Müller cells of the rat retina , 2000 .

[130]  R. Weinberg Glutamate: an excitatory neurotransmitter in the mammalian CNS , 1999, Brain Research Bulletin.

[131]  N. Tamaki,et al.  Store Ca2+ depletion enhances NMDA responses in cultured human astrocytes. , 1999, Biochemical and biophysical research communications.

[132]  S. Kirischuk,et al.  Glutamate-triggered calcium signalling in mouse Bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release , 1999, Neuroscience.

[133]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[134]  G. Housley,et al.  Distribution of the P2X2 receptor subunit of the ATP‐gated ion channels in the rat central nervous system , 1999, The Journal of comparative neurology.

[135]  Y. Jo,et al.  Synaptic corelease of ATP and GABA in cultured spinal neurons , 1999, Nature Neuroscience.

[136]  M. Moloney,et al.  Excitatory amino acids. , 1998, Natural product reports.

[137]  F. Conti,et al.  Expression and functional analysis of glutamate receptors in glial cells. , 1999, Advances in experimental medicine and biology.

[138]  A. Verkhratsky,et al.  Relations between intracellular Ca2+ stores and store‐operated Ca2+ entry in primary cultured human glioblastoma cells , 1998, The Journal of physiology.

[139]  O. Krishtal,et al.  A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus , 1998, The European journal of neuroscience.

[140]  Geoffrey Burnstock,et al.  Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum , 1998, Cell and Tissue Research.

[141]  G. Burnstock,et al.  Purinergic signalling: pathophysiological roles. , 1998, Japanese journal of pharmacology.

[142]  L. Venance,et al.  Intercellular calcium signaling and gap junctional communication in astrocytes , 1998, Glia.

[143]  T. Möller,et al.  Long-term activation of capacitative Ca2+ entry in mouse microglial cells , 1998, Neuroscience.

[144]  K. Reymann,et al.  Pharmacological characterisation of metabotropic glutamatergic and purinergic receptors linked to Ca2+ signalling in hippocampal astrocytes , 1998, Neuropharmacology.

[145]  A. Verkhratsky,et al.  Glial calcium: homeostasis and signaling function. , 1998, Physiological reviews.

[146]  A. Chvátal,et al.  Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. , 1998, Physiological research.

[147]  G. Burnstock,et al.  Characterization of the Ca2+ responses evoked by ATP and other nucleotides in mammalian brain astrocytes , 1997, British journal of pharmacology.

[148]  S. Kirischuk,et al.  Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals. , 1997, Cell calcium.

[149]  S. Kirischuk,et al.  Na+/Ca2+ exchanger modulates kainate‐triggered Ca2+ signaling in Bergmann glial cells in situ , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[150]  A. López-Colomé,et al.  NMDA receptors in cultured radial glia , 1997, FEBS letters.

[151]  K. Zahs,et al.  Calcium Waves in Retinal Glial Cells , 1997, Science.

[152]  M. Rathbone,et al.  Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. , 1996, Neuroreport.

[153]  G. Housley,et al.  Localization of ATP-gated ion channels in cerebellum using P2x2R subunit-specific antisera. , 1996, Neuroreport.

[154]  C. Matute,et al.  Expression of Kainate‐selective Glutamate Receptor Subunits in Glial Cells of the Adult Bovine White Matter , 1996, The European journal of neuroscience.

[155]  M. Goligorsky,et al.  Cannabinoid Receptors Are Coupled to Nitric Oxide Release in Invertebrate Immunocytes, Microglia, and Human Monocytes* , 1996, The Journal of Biological Chemistry.

[156]  N. Abbott,et al.  Signalling from neurones to glial cells in invertebrates , 1996, Trends in Neurosciences.

[157]  Christian Steinhäuser,et al.  News on glutamate receptors in glial cells , 1996, Trends in Neurosciences.

[158]  Helmut Kettenmann,et al.  Calcium signalling in glial cells , 1996, Trends in Neurosciences.

[159]  S. Kirischuk,et al.  Activation of P2-purino-,α1-adreno and H1-histamine receptors triggers cytoplasmic calcium signalling in cerebellar purkinje neurons , 1996, Neuroscience.

[160]  F. Conti,et al.  Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes , 1996, Glia.

[161]  G. Fricchione,et al.  Morphine-induced conformational changes in human monocytes, granulocytes, and endothelial cells and in invertebrate immunocytes and microglia are mediated by nitric oxide. , 1996, Journal of immunology.

[162]  S. Kirischuk,et al.  Calcium Signalling in Mouse Bergmann Glial Cells Mediated by α1‐adrenoreceptors and H1 Histamine ‐ Receptors , 1996, The European journal of neuroscience.

[163]  T. Bilfinger,et al.  Morphine stimulates nitric oxide release from invertebrate microglia , 1996, Brain Research.

[164]  F. Kirchhoff,et al.  Expression of Glycine Receptor Subunits in Glial Cells of the Rat Spinal Cord , 1996, Journal of neurochemistry.

[165]  R. Petralia,et al.  The metabotropic glutamate receptors, MGLUR2 and MGLUR3, show unique postsynaptic, presynaptic and glial localizations , 1996, Neuroscience.

[166]  N J Sucher,et al.  Activation of NMDA receptor-channels in human retinal Müller glial cells inhibits inward-rectifying potassium currents , 1996, Visual Neuroscience.

[167]  S. Kirischuk,et al.  ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[168]  H. Kettenmann,et al.  GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[169]  K. McCarthy,et al.  GFAP‐positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i , 1995, Glia.

[170]  S. Kirischuk,et al.  Subcellular heterogeneity of voltage‐gated Ca2+ channels in cells of the oligodendrocyte lineage , 1995, Glia.

[171]  P. Kostyuk,et al.  Calcium stores in neurons and glia , 1994, Neuroscience.

[172]  B. Pearce,et al.  Purine- and pyrimidine-stimulated phosphoinositide breakdown and intracellular calcium mobilisation in astrocytes , 1994, Brain Research.

[173]  K. McCarthy,et al.  Plasticity of astrocytes , 1994, Glia.

[174]  G. Gimpl,et al.  Extracellular ATP‐induced currents in astrocytes: Involvement of a cation channel , 1994, Journal of neuroscience research.

[175]  H. Kettenmann,et al.  Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice , 1994, Hippocampus.

[176]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[177]  S. Murphy,et al.  UTP activates multiple second messenger systems in cultured rat astrocytes , 1993, Neuroscience Letters.

[178]  D. Condorelli,et al.  AMPA‐Selective glutamate receptor subunits in astroglial cultures , 1993, Journal of neuroscience research.

[179]  P. Seeburg,et al.  Mammalian ionotropic glutamate receptors , 1993, Current Opinion in Neurobiology.

[180]  J. Grosche,et al.  NMDA-activated currents in Bergmann glial cells. , 1993, Neuroreport.

[181]  H. Kettenmann,et al.  Ca2+ Channel Expression in the Oligodendrocyte Lineage , 1992, The European journal of neuroscience.

[182]  F. Edwards,et al.  ATP receptor-mediated synaptic currents in the central nervous system , 1992, Nature.

[183]  E. M. Silinsky,et al.  ATP mediates excitatory synaptic transmission in mammalian neurones , 1992, British journal of pharmacology.

[184]  W. Walz,et al.  Ionic dependence of a P2‐purinoceptor mediated depolarization of cultured astrocytes , 1992, Journal of neuroscience research.

[185]  T. Berger,et al.  Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. , 1992, Science.

[186]  V. Derkach,et al.  ATP mediates fast synaptic transmission in mammalian neurons , 1992, Nature.

[187]  K. McCarthy,et al.  Stimulation of the P2Y Purinergic Receptor on Type 1 Astroglia Results in Inositol Phosphate Formation and Calcium Mobilization , 1992, Journal of neurochemistry.

[188]  Stephen J. Smith,et al.  Neuronal activity triggers calcium waves in hippocampal astrocyte networks , 1992, Neuron.

[189]  K. McCarthy,et al.  Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands , 1991, Neuroscience.

[190]  S. R. Cajal From: ¿Neuronismo o reticularismo? Las pruebas objectivas de la unidad anatómica de las células nerviosas , 1991 .

[191]  K. McCarthy,et al.  Cerebral type 2 astroglia are heterogeneous with respect to their ability to respond to neuroligands linked to calcium mobilization , 1991, Glia.

[192]  A. Cornell-Bell,et al.  Na(+)-current expression in rat hippocampal astrocytes in vitro: alterations during development. , 1991, Journal of neurophysiology.

[193]  R J Miller,et al.  Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[194]  S. Finkbeiner,et al.  Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. , 1990, Science.

[195]  K. McCarthy,et al.  Norepinephrine‐evoked calcium transients in cultured cerebral type 1 astroglia , 1990, Glia.

[196]  S. Murphy,et al.  ATP‐Evoked Ca2+ Mobilisation and Prostanoid Release from Astrocytes: P2‐Purinergic Receptors Linked to Phosphoinositide Hydrolysis , 1989, Journal of neurochemistry.

[197]  I. Holopainen,et al.  Glutamate receptor‐linked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes , 1989, Glia.

[198]  S Satoh,et al.  [Endoplasmic reticulum]. , 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[199]  J. M. Ritchie,et al.  The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[200]  G Burnstock,et al.  Is there a basis for distinguishing two types of P2-purinoceptor? , 1985, General pharmacology.

[201]  K. H. Backus,et al.  Aspartate, glutamate and γ-aminobutyric acid depolarize cultured astrocytes , 1984, Neuroscience Letters.

[202]  H. Kimelberg,et al.  Excitatory amino acids directly depolarize rat brain astrocytes in primary culture , 1984, Nature.

[203]  H. Kettenmann,et al.  Depolarization of cultured oligodendrocytes by glutamate and GABA , 1984, Neuroscience Letters.

[204]  K. H. Backus,et al.  Aspartate, glutamate and gamma-aminobutyric acid depolarize cultured astrocytes. , 1984, Neuroscience letters.

[205]  K Krnjevicacute,et al.  An excitatory amino Acid. , 1982, Science.

[206]  R. H. Evans,et al.  Excitatory amino acid transmitters. , 1981, Annual review of pharmacology and toxicology.

[207]  W. Penfield Cytology & cellular pathology of the nervous system , 1965 .

[208]  B. Katz,et al.  The effect of calcium on acetylcholine release from motor nerve terminals , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[209]  B. Katz,et al.  Propagation of electric activity in motor nerve terminals , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[210]  D. R. Curtis,et al.  Chemical Excitation of Spinal Neurones , 1959, Nature.

[211]  G. Palade,et al.  THE ENDOPLASMIC RETICULUM , 1956, The Journal of biophysical and biochemical cytology.

[212]  Takashi Hayashi EFFECTS OF SODIUM GLUTAMATE ON THE NERVOUS SYSTEM , 1954 .

[213]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[214]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[215]  Max Johann Sigismund Schultze,et al.  Zur Anatomie und Physiologie der Retina , 1866 .

[216]  M. Schultze,et al.  Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere , 1865 .

[217]  Theodore H. Schwann,et al.  Microscopical researches into the accordance in the structure and growth of animals and plants , 1847 .