Preparation of point-line Bi2WO6@TiO2 nanowires composite photocatalysts with enhanced UV/visible-light-driven photocatalytic activity

[1]  Yihe Zhang,et al.  Influences of Gd Substitution on the Crystal Structure and Visible-Light-Driven Photocatalytic Performance of Bi2WO6 , 2014 .

[2]  Yihe Zhang,et al.  Ce and F Comodification on the Crystal Structure and Enhanced Photocatalytic Activity of Bi2WO6 Photocatalyst under Visible Light Irradiation , 2014 .

[3]  Hyunjun Yoo,et al.  Understanding Photoluminescence of Monodispersed Crystalline Anatase TiO2 Nanotube Arrays , 2014 .

[4]  Wang Yu,et al.  Three-dimensional TiO 2 /Bi 2 WO 6 hierarchical heterostructure with enhanced visible photocatalytic activity , 2014 .

[5]  Yihe Zhang,et al.  A one-step hydrothermal preparation strategy for layered BiIO4/Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities , 2014 .

[6]  Yuyu Bu,et al.  Highly efficient photocatalytic performance of graphene-ZnO quasi-shell-core composite material. , 2013, ACS applied materials & interfaces.

[7]  J. Yates,et al.  Electron Hopping through TiO2 Powder: A Study by Photoluminescence Spectroscopy , 2013 .

[8]  Lin-lin Chen,et al.  Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity. , 2013, Dalton transactions.

[9]  J. Kita,et al.  Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing , 2013 .

[10]  G. K. Pradhan,et al.  Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. , 2013, ACS applied materials & interfaces.

[11]  J. Navío,et al.  Degradation of Rhodamine B/Phenol Mixtures in Water by Sun‐Like Excitation of a Bi2WO6–TiO2 Photocatalyst , 2013, Photochemistry and photobiology.

[12]  Stanislaus S. Wong,et al.  Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. , 2013, ACS applied materials & interfaces.

[13]  Jianlin Shi On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. , 2013, Chemical reviews.

[14]  N. Zhang,et al.  Recent progress on graphene-based photocatalysts: current status and future perspectives. , 2012, Nanoscale.

[15]  Ying Dai,et al.  An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. , 2012, Chemical communications.

[16]  Sanjaya D. Perera,et al.  Hydrothermal synthesis of graphene-TiO 2 nanotube composites with enhanced photocatalytic activity , 2012 .

[17]  Bin Sun,et al.  Recent advances in solar cells based on one-dimensional nanostructure arrays. , 2012, Nanoscale.

[18]  H. Wan,et al.  Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst. , 2012, Dalton transactions.

[19]  S. Ramakrishna,et al.  Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. , 2012, Nanoscale.

[20]  Wenzhong Wang,et al.  Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor: A case study on Bi2WO6/TiO2 , 2012 .

[21]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[22]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[23]  Wei‐De Zhang,et al.  Preparation and modification of hierarchical nanostructured Bi2WO6 with high visible light-induced photocatalytic activity , 2011, Nanotechnology.

[24]  Yi Cui,et al.  One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials , 2011 .

[25]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[26]  R. Amal,et al.  Synthesis of Porous and Visible-Light Absorbing Bi2WO6/TiO2 Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances , 2011 .

[27]  Meili Guan,et al.  From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties. , 2011, Inorganic chemistry.

[28]  J. Zou,et al.  Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets. , 2011, Chemistry.

[29]  Tae Geun Kim,et al.  Synthesis of Cu-Doped TiO2 Nanorods with Various Aspect Ratios and Dopant Concentrations , 2010 .

[30]  Ling Zhang,et al.  3D Bi2WO6/TiO2 Hierarchical Heterostructure: Controllable Synthesis and Enhanced Visible Photocatalytic Degradation Performances , 2009 .

[31]  Yanbiao Liu,et al.  Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays , 2009 .

[32]  Wenzhong Wang,et al.  New Bi2WO6 Nanocages with High Visible-Light-Driven Photocatalytic Activities Prepared in Refluxing EG , 2009 .

[33]  J. Nedeljković,et al.  Photoluminescence of anatase and rutile TiO2 particles. , 2006, The journal of physical chemistry. B.

[34]  W. Park,et al.  ZnO Nanorod Logic Circuits , 2005, Advanced materials.

[35]  N. Wu,et al.  Effect of calcination atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution , 2004 .

[36]  J. Zhang,et al.  Hydrothermal synthesis and photoluminescence of TiO2 nanowires , 2002 .

[37]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[38]  K. Lv,et al.  TiO2-Modified Flower-Like Bi2WO6 Nanostructures with Enhanced UV-Vis Photocatalytic Activity , 2011 .

[39]  Georg Maret,et al.  Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TiO2 Particles. , 2004 .