Implementation of a Fuzzy Controller for an Autonomous Mobile Robot in the PIC18F4550 Microcontroller

Soft Computing has been gaining popularity in real world applications in many fields, an example of the area that has a wide variety of applications of these techniques is the Robotics area. In this work, we introduce the design of a hardware system for an autonomous mobile robot and the development of a Fuzzy Logic Controller for the control of the motion of a robot to follow a trajectory. We consider the error in the distance to the path as the unique input to the fuzzy controller and as the outputs, the linear velocity of each of the two wheels of the robot. We also show the development of the firmware in the PIC18F4550 microcontroller as the implementation of the Fuzzy Logic Controller.

[1]  Oscar Castillo,et al.  Modelling, Simulation and Control of Non-linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory , 2001 .

[2]  Oscar Castillo,et al.  Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems , 2015, Expert Syst. Appl..

[3]  Denisse Hidalgo,et al.  Fuzzy Dynamic Adaptation of Gap Generation and Mutation in Genetic Optimization of Type 2 Fuzzy Controllers , 2018, Adv. Oper. Res..

[4]  Oscar Castillo,et al.  Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm , 2013, Expert Syst. Appl..

[5]  Hamit Erdem,et al.  Application of Neuro-Fuzzy Controller for Sumo Robot control , 2011, Expert Syst. Appl..

[6]  Antonio Rodríguez Díaz,et al.  Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure , 2011, Inf. Sci..

[7]  Lotfi A. Zadeh,et al.  A rationale for fuzzy control , 1972 .

[8]  Magnus Egerstedt,et al.  A Parametric MPC Approach to Balancing the Cost of Abstraction for Differential-Drive Mobile Robots , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Patricia Melin,et al.  A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting , 2007, Appl. Soft Comput..

[10]  Nabil Derbel,et al.  Optimal trajectory of a mobile robot using hierarchical fuzzy logic controller , 2016, Int. J. Comput. Appl. Technol..

[11]  Oscar Castillo,et al.  Edge-Detection Method for Image Processing Based on Generalized Type-2 Fuzzy Logic , 2014, IEEE Transactions on Fuzzy Systems.

[12]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU)--an outline , 2005, Inf. Sci..

[13]  Oscar Castillo,et al.  An Extension of the Fuzzy Possibilistic Clustering Algorithm Using Type-2 Fuzzy Logic Techniques , 2017, Adv. Fuzzy Syst..

[14]  Oscar Castillo,et al.  Optimization of Membership Function Parameters for Fuzzy Controllers of an Autonomous Mobile Robot Using the Flower Pollination Algorithm , 2018, J. Autom. Mob. Robotics Intell. Syst..

[15]  Oscar Castillo,et al.  Fuzzy Controllers for Autonomous Mobile Robots , 2015, Handbook of Computational Intelligence.

[16]  Oscar Castillo,et al.  A Fuzzy Control Design for an Autonomous Mobile Robot Using Ant Colony Optimization , 2014, Recent Advances on Hybrid Approaches for Designing Intelligent Systems.

[17]  Oscar Castillo,et al.  Interval Type-2 TSK Fuzzy Logic Systems Using Hybrid Learning Algorithm , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[18]  V.M. Peri,et al.  Fuzzy logic control for an autonomous robot , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[19]  Nohé R. Cázarez-Castro,et al.  Designing Type-1 and Type-2 Fuzzy Logic Controllers via Fuzzy Lyapunov Synthesis for nonsmooth mechanical systems , 2012, Eng. Appl. Artif. Intell..

[20]  Patricia Melin,et al.  New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension , 2017 .

[21]  Oscar Castillo,et al.  Optimization of Reactive Control for Mobile Robots Based on the CRA Using Type-2 Fuzzy Logic , 2017, Nature-Inspired Design of Hybrid Intelligent Systems.

[22]  Oscar Castillo,et al.  Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach , 2001, IEEE Trans. Ind. Electron..

[23]  Oscar Castillo,et al.  Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation , 2016, Appl. Soft Comput..

[24]  Oscar Castillo,et al.  A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot , 2015, Appl. Soft Comput..

[25]  Oscar Castillo,et al.  Trajectory Optimization for an Autonomous Mobile Robot Using the Bat Algorithm , 2017, NAFIPS.

[26]  Juan R. Castro,et al.  A Generalized Type-2 Fuzzy Logic System for the dynamic adaptation the parameters in a Bee Colony Optimization algorithm applied in an autonomous mobile robot control , 2016, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[27]  Michael R. M. Jenkin,et al.  Computational principles of mobile robotics , 2000 .