Asymptotic correction and inverse eigenvalue problems: an overview

Asymptotic correction was first used by Paine, de Hoog and Anderssen to improve the accuracy of finite difference approximations of higher Sturm--Liouville eigenvalues. Later it was used to develop an important class of methods for numerical solution of inverse Sturm--Liouville problems. It also shows promise as a method for the solution of more general inverse eigenvalue problems, including some involving partial differential equations and higher order operators. We critically review the literature on this subject and discuss some important open questions.

[1]  Alan L. Andrew,et al.  Correction of Numerov's eigenvalue estimates , 1985 .

[2]  Alan L. Andrew Twenty years of asymptotic correction for eigenvalue computation , 2000 .

[3]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[4]  F. Natterer A Lanczos type algorithm for inverse Sturm-Liouville problems , 1992 .

[5]  Alan L. Andrew,et al.  Correction of finite element estimates for Sturm-Liouville eigenvalues , 1986 .

[6]  Raymond H. Chan,et al.  An Inexact Cayley Transform Method For Inverse Eigenvalue Problems , 2004 .

[7]  J. T. Marti Small potential corrections for the discrete eigenvalues of the Sturm-Liouville problem , 1990 .

[8]  C. R. Dun Algebraic correction methods for two-dimensional eigenvalue problems , 1995 .

[9]  Alan L. Andrew,et al.  Asymptotic Correction of More Sturm–Liouville Eigenvalue Estimates , 2003 .

[10]  A. Andrew Numerov's method for inverse Sturm–Liouville problems , 2005 .

[11]  Ole H. Hald,et al.  Inverse eigenvalue problems for Jacobi matrices , 1976 .

[12]  M. Pirovino Das Sturm-Liouville-Problem als direktes und inverses Eigenwertproblem und seine numerische Behandlung durch finite Differenzen , 1992 .

[13]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems , 1981, Computing.

[14]  Alan L. Andrew,et al.  Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions , 2000 .

[15]  J. Paine,et al.  A Numerical Method for the Inverse Sturm–Liouville Problem , 1984 .

[16]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[17]  Alan L. Andrew Classroom Note: Centrosymmetric Matrices , 1998, SIAM Rev..

[18]  R. Fabiano,et al.  A finite-difference algorithm for an inverse Sturm-Liouville problem , 1995 .

[19]  B. Anderssen Algebraic Correction Methods for Inverse Sturm-liouville Problems , 2007 .

[20]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[21]  Ole Hald,et al.  The inverse Sturm-Liouville problem and the Rayleigh-Ritz method , 1978 .

[22]  A. Andrew Numerical solution of inverse Sturm--Liouville problems , 2004 .

[23]  William Rundell,et al.  Reconstruction techniques for classical inverse Sturm-Liouville problems , 1992 .