The space of persistence diagrams has infinite asymptotic dimension

We define an obstruction to finite asymptotic dimension for metric spaces that we call k-prisms. This structure allows for a simple proof that the space of persistence diagrams has infinite asymptotic dimension in a Wasserstein metric.

[1]  Benjamin S. Glicksberg,et al.  Identification of type 2 diabetes subgroups through topological analysis of patient similarity , 2015, Science Translational Medicine.

[2]  Seth Lloyd,et al.  Quantum algorithms for topological and geometric analysis of data , 2016, Nature Communications.

[3]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[4]  P. Nowak Coarsely embeddable metric spaces without Property A , 2007 .

[5]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[6]  Guoliang Yu The Novikov conjecture for groups with finite asymptotic dimension , 1998 .

[7]  Guoliang Yu,et al.  The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space , 2000 .

[8]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[9]  Afra Zomorodian,et al.  Computational topology , 2010 .

[10]  Clifton Bob Clark,et al.  The University of North Carolina at Greensboro , 1980 .

[11]  Emerson G. Escolar,et al.  Persistent homology and many-body atomic structure for medium-range order in the glass , 2015, Nanotechnology.

[12]  C. J. Carstens,et al.  Persistent Homology of Collaboration Networks , 2013 .

[13]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[14]  Roberto Franzosi,et al.  Persistent homology analysis of phase transitions. , 2016, Physical review. E.

[15]  N. Higson,et al.  Amenable group actions and the Novikov conjecture , 2000 .

[16]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.