Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures

Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

[1]  D. Cahill,et al.  Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments , 2014, Nature Communications.

[2]  K. Nelson,et al.  Examining thermal transport through a frequency-domain representation of time-domain thermoreflectance data. , 2014, The Review of scientific instruments.

[3]  M. Dresselhaus,et al.  Spectral mapping of thermal conductivity through nanoscale ballistic transport. , 2015, Nature nanotechnology.

[4]  Ronggui Yang,et al.  Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. , 2010, Nature materials.

[5]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[6]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[7]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[8]  Onset of nondiffusive phonon transport in transient thermal grating decay , 2011, 1108.3770.

[9]  K. Nelson,et al.  Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes , 2014, 1408.6747.

[10]  David G. Cahill,et al.  Frequency dependence of the thermal conductivity of semiconductor alloys , 2007 .

[11]  A. Schmidt Optical characterization of thermal transport from the nanoscale to the macroscale , 2008 .

[12]  Cristina H Amon,et al.  Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance , 2013, Nature Communications.

[13]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[14]  Xuan Zheng,et al.  Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters. , 2008, The Review of scientific instruments.

[15]  Radial Quasiballistic Transport in Time-Domain Thermoreflectance Studied Using Monte Carlo Simulations , 2014, 1402.1114.

[16]  Gang Chen,et al.  Applied Physics Reviews Nanoscale Thermal Transport. Ii. 2003–2012 , 2022 .

[17]  Kenneth E. Goodson,et al.  Thermal conduction phenomena in carbon nanotubes and related nanostructured materials , 2013 .

[18]  A. Minnich Exploring electron and phonon transport at the nanoscale for thermoelectric energy conversion , 2011 .

[19]  Gang Chen,et al.  Disparate quasiballistic heat conduction regimes from periodic heat sources on a substrate , 2014 .

[20]  Amelia Carolina Sparavigna,et al.  On the isotope effect in thermal conductivity of silicon , 2004 .

[21]  O. Delaire,et al.  Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. , 2013, Nature nanotechnology.

[22]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[23]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[24]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[25]  Gang Chen,et al.  Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. , 2012, Physical review letters.

[26]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.

[27]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[28]  Gang Chen,et al.  Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. , 2008, The Review of scientific instruments.

[29]  Yuan Taur,et al.  Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation , 2005 .

[30]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[31]  M. Dresselhaus,et al.  Thermal conductivity spectroscopy technique to measure phonon mean free paths. , 2011, Physical review letters.

[32]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[33]  A. Minnich,et al.  Determining phonon mean free paths from observations of quasiballistic thermal transport. , 2012, Physical review letters.

[34]  J. Schumann,et al.  Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. , 2010, Nature materials.

[35]  David Broido,et al.  Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .

[36]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[37]  Weilun Chao,et al.  A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency , 2014, Proceedings of the National Academy of Sciences.

[38]  Eric Pop,et al.  Heat Generation and Transport in Nanometer-Scale Transistors , 2006, Proceedings of the IEEE.

[39]  Gang Chen,et al.  Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles , 1996 .

[40]  Kenneth E. Goodson,et al.  Thermal conduction in sub-100nm transistors , 2006, Microelectron. J..

[41]  C. Dames,et al.  Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures , 2013 .

[42]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[43]  K. Nelson,et al.  Non-diffusive relaxation of a transient thermal grating analyzed with the Boltzmann transport equation , 2013 .

[44]  G Chen,et al.  Ballistic-diffusive heat-conduction equations. , 2001, Physical review letters.

[45]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[46]  Feng Liu,et al.  30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography , 2006 .