Thermodynamic Studies of Supramolecular Systems

[1]  G. Schroeder,et al.  Stoichiometry and thermodynamics of gemcitabine and cucurbituril Q7 supramolecular complexes in high acidic aqueous solution , 2019, Journal of Molecular Structure.

[2]  P. Neužil,et al.  High-performance microcalorimeters: Design, applications and future development , 2018, TrAC Trends in Analytical Chemistry.

[3]  N. Hădărugă,et al.  A review on thermal analyses of cyclodextrins and cyclodextrin complexes , 2018, Environmental Chemistry Letters.

[4]  Andrew L. Lee,et al.  Thermodynamic and NMR Assessment of Ligand Cooperativity and Intersubunit Communication in Symmetric Dimers: Application to Thymidylate Synthase , 2018, Front. Mol. Biosci..

[5]  Y. Mastai,et al.  Isothermal titration calorimetry for chiral chemistry. , 2018, Chirality.

[6]  Vandana Bhalla Supramolecular Chemistry , 2018, Resonance.

[7]  Caixia Qi,et al.  Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone , 2018, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[8]  M. R. Reiten,et al.  Stress Resilience of Spermatozoa and Blood Mononuclear Cells without Prion Protein , 2018, Front. Mol. Biosci..

[9]  L. García‐Río,et al.  A journey from calix[4]arene to calix[6] and calix[8]arene reveals more than a matter of size. Receptor concentration affects the stability and stoichiometric nature of the complexes. , 2017, Physical chemistry chemical physics : PCCP.

[10]  X. Gong,et al.  Microencapsulation thermodynamics of methylated β-cyclodextrins with bile salt: enthalpy, entropy, and solvent effect , 2017, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[11]  P. Kościelniak,et al.  Enhancing effectiveness of capillary electrophoresis as an analytical tool in the supramolecular acidity modification , 2017, Analytical and Bioanalytical Chemistry.

[12]  A. Bochot,et al.  Thirty years with cyclodextrins. , 2016, International journal of pharmaceutics.

[13]  A. Daranas,et al.  Application of isothermal titration calorimetry as a tool to study natural product interactions. , 2016, Natural product reports.

[14]  F. García-Carmona,et al.  Encapsulation of piceatannol, a naturally occurring hydroxylated analogue of resveratrol, by natural and modified cyclodextrins. , 2016, Food & function.

[15]  Zsombor Miskolczy,et al.  Multiple inclusion complex formation of protonated ellipticine with cucurbit[8]uril: thermodynamics and fluorescence properties , 2016 .

[16]  M. Roy,et al.  NMR, surface tension and conductivity studies to determine the inclusion mechanism: thermodynamics of host–guest inclusion complexes of natural amino acids in aqueous cyclodextrins , 2016 .

[17]  V. Sharnin,et al.  A thermodynamic study of reactions of amino acids with crown ethers in nonaqueous media as examples of guest—host molecular complex formation , 2015, Russian Chemical Bulletin.

[18]  M. Wszelaka-Rylik,et al.  Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with tropane alkaloids , 2015, Journal of Thermal Analysis and Calorimetry.

[19]  A. El‐Bindary,et al.  Supramolecular Assembly on Coordination of Azopolymer Complexes: A Review , 2015 .

[20]  P. Mura Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. , 2014, Journal of pharmaceutical and biomedical analysis.

[21]  N. Berova,et al.  Application of electronic circular dichroism in the study of supramolecular systems. , 2014, Chemical Society reviews.

[22]  T. Carmona,et al.  Binding of a neutral guest to cucurbiturils: photophysics, thermodynamics and molecular modelling , 2014 .

[23]  Yong Chen,et al.  Molecular binding thermodynamics of spherical guests by β-cyclodextrins bearing aromatic substituents , 2014 .

[24]  R. Behjatmanesh-Ardakani,et al.  Conductometric studies of thermodynamics of complexation of Li+, Na+ and K+ ions with 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 in binary acetonitrile–nitromethane mixtures , 2013, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[25]  L. Mutihac,et al.  Survey on thermodynamic properties for the complexation behaviour of some calixarene and cucurbituril receptors , 2013, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[26]  A. F. Namor,et al.  An Enchiridion of Supramolecular Thermodynamics: Calix[N]arene (N=4,5,6) Tertiary Amide Derivatives and their Ionic Recognition , 2013 .

[27]  M. Benkő,et al.  Thermodynamics of formation of β-cyclodextrin inclusion complexes with four series of surfactant homologs , 2013, Journal of Thermal Analysis and Calorimetry.

[28]  M. Wszelaka-Rylik,et al.  Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs , 2013, Journal of Thermal Analysis and Calorimetry.

[29]  P. Westh,et al.  Thermodynamics of the interaction of γ-cyclodextrin and tauro- and glyco-conjugated bile salts , 2013, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[30]  Yu Liu,et al.  Complexation of p‐Sulfonatocalixarenes with Local Anaesthetics Guests: Binding Structures, Stabilities, and Thermodynamic Origins , 2012 .

[31]  C. Breslin,et al.  Complexation study and spectrofluorometric determination of the binding constant for diquat and p-sulfonatocalix[4]arene , 2012 .

[32]  Jianbin Chao,et al.  Study on the intermolecular complexation behavior between p-sulfonatocalix[4]arene with l-tyrosine , 2012, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[33]  K. Sharma,et al.  Pillar[5]arenes: fascinating cyclophanes with a bright future. , 2012, Chemical Society reviews.

[34]  E. Matteoli,et al.  Effect of solvation on the thermodynamics of the formation of molecular complexes of 18-crown-6 ether with glycine in water-dimethylsulfoxide solutions , 2011 .

[35]  Adam R. Urbach,et al.  Nanomolar binding of peptides containing noncanonical amino acids by a synthetic receptor. , 2011, Journal of the American Chemical Society.

[36]  Jong Seung Kim,et al.  Recognition of amino acids by functionalized calixarenes. , 2011, Chemical Society reviews.

[37]  P. Couvreur,et al.  A comprehensive study of the spontaneous formation of nanoassemblies in water by a "lock-and-key" interaction between two associative polymers. , 2011, Journal of colloid and interface science.

[38]  K. Bouchemal,et al.  Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[39]  J. Asikkala,et al.  Thermodynamics of cesium complexes formation with 18-crown-6 in ionic liquids , 2010 .

[40]  L. Mutihac,et al.  The formation of homogeneous and heterogeneous 2:1 complexes between dialkyl- and diarylammonium ions and α-cyclodextrin and cucurbit[6]uril in aqueous formic acid , 2009 .

[41]  Oksana Danylyuk,et al.  Solid-state interactions of calixarenes with biorelevant molecules. , 2009, Chemical communications.

[42]  J. O. Jeppesen,et al.  Determination of binding strengths of a host-guest complex using resonance Raman scattering. , 2009, The journal of physical chemistry. A.

[43]  S. Kubik Amino acid containing anion receptors. , 2009, Chemical Society reviews.

[44]  Aurelia Pastor,et al.  NMR spectroscopy in coordination supramolecular chemistry: A unique and powerful methodology , 2008 .

[45]  S. Weber,et al.  Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. , 2008, Trends in analytical chemistry : TRAC.

[46]  Yu Liu,et al.  Selective binding behaviors of p-sulfonatocalixarenes in aqueous solution , 2008 .

[47]  Yu Liu,et al.  Highly effective binding of methyl viologen dication and its radical cation by p-sulfonatocalix[4,5]arenes. , 2007, The Journal of organic chemistry.

[48]  E. Schollmeyer,et al.  Supramolecular solid-gas complexes: a thermodynamic approach. , 2007, Angewandte Chemie.

[49]  M. Shamsipur,et al.  Proton NMR study of the stoichiometry, stability and thermodynamics of complexation of Rb+ ion with 18-crown-6 in binary dimethylsulfoxide–nitrobenzene mixtures , 2007 .

[50]  Yong Chen,et al.  Molecular recognition thermodynamics of pyridine derivatives by sulfonatocalixarenes at different pH values. , 2006, The Journal of organic chemistry.

[51]  Yu Liu,et al.  Molecular Selective Binding of Pyridinium Guest Ions by Water-Soluble Calix[4]arenes , 2005 .

[52]  S. Leharne,et al.  {\rtf1\ansi\ansicpg1250\deff0\deflang1038\deflangfe1038\deftab708{\fonttbl{\f0\froman\fprq2\fcharset238{\*\fname Times New Roman;}Times New Roman CE;}} \viewkind4\uc1\pard\f0\fs20 Saturation determination of micellar systems using isothermal titration calorimetry \par } , 2005 .

[53]  Yu Liu,et al.  Intermolecular complexation thermodynamics between water-soluble calix[4]arenes and diazacycloalkanes , 2005 .

[54]  Yu Liu,et al.  Molecular recognition thermodynamics of bile salts by beta-cyclodextrin dimers: Factors governing the cooperative binding of cyclodextrin dimers. , 2005, The journal of physical chemistry. B.

[55]  Yoram Cohen,et al.  Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter--new insights. , 2005, Angewandte Chemie.

[56]  J. Seelig,et al.  Calorimetric measurement of phospholipid interaction with methyl-beta-cyclodextrin. , 2004, Biochemistry.

[57]  G. Folkers,et al.  Thermodynamics of Protein–Ligand Interactions: History, Presence, and Future Aspects , 2004, Journal of receptor and signal transduction research.

[58]  Bao-hang Han,et al.  Molecular Recognition and Complexation Thermodynamics of Dye Guest Molecules by Modified Cyclodextrins and Calixarenesulfonates , 2002 .

[59]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[60]  V. Hilser,et al.  The heat capacity of proteins , 1995, Proteins.

[61]  I. Wadsö,et al.  Scope of microcalorimetry in the area of macrocyclic chemistry , 1995 .

[62]  A. F. Namor Applications of Calorimetry (Macro and Micro) to the Study of Host- Guest Interactions in Solution , 1994 .

[63]  K. P. Murphy,et al.  Entropy in biological binding processes: Estimation of translational entropy loss , 1994, Proteins.

[64]  A. Casy Chiral discrimination by NMR spectroscopy , 1993 .

[65]  A. Velázquez‐Campoy,et al.  Isothermal titration calorimetry , 1990 .

[66]  G. Arena,et al.  Critical review of the calorimetric method for equilibrium constant determination , 1989 .

[67]  W. A. Freeman Structures of the p-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand 'cucurbituril', C36H36N24O12 , 1984 .

[68]  M R Eftink,et al.  Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A. , 1983, Biochemistry.

[69]  Charles J. Pedersen,et al.  Cyclic polyethers and their complexes with metal salts , 1967 .

[70]  Lee D. Hansen,et al.  Entropy Titration. A Calorimetric Method for the Determination of ΔG, ΔH, and ΔS from a Single Thermometric Titration1a,b , 1966 .

[71]  L. Hansen,et al.  New Precision Thermometric Titration Calorimeter , 1965 .

[72]  M. J. O'neill,et al.  A Differential Scanning Calorimeter for Quantitative Differential Thermal Analysis. , 1964 .

[73]  John E. Leffler,et al.  THE ENTHALPY-ENTROPY RELATIONSHIP AND ITS IMPLICATIONS FOR ORGANIC CHEMISTRY , 1955 .

[74]  R. Kakkar,et al.  Host–guest complexation studies of p-tertbutylcalix[4]arene against ions of interest for radiological decontamination , 2019, Inorganica Chimica Acta.

[75]  G. S. Kumar,et al.  Physicochemical properties of inclusion complexes of sanguinarine with natural cyclodextrins: spectroscopy, calorimetry and NMR studies , 2015 .

[76]  Jean-Marie Lehn,et al.  Supramolecular Chemistry: Concepts And Perspectives , 2014 .

[77]  Z. Ying Binding thermodynamics of quinolinyl-modified β-cyclodextrins with bile salts , 2010 .

[78]  Yu Liu,et al.  Molecular design of calixarenes. Part 3. Complexation thermodynamics of light lanthanoid nitrates with a novel p-tert-butylcalix[4]arene Schiff base in acetonitrile: an enhanced Eu3+ selectivity by side-arm ligation , 2001 .

[79]  P. Blackett,et al.  Cyclodextrin–monosaccharide interactions in water , 1994 .

[80]  Dudley H. Williams,et al.  Partitioning of free energy contributions in the estimation of binding constants : Residual motions and consequences for amide-amide hydrogen bond strengths , 1992 .

[81]  F. Djedaïni-Pilard,et al.  High field NMR techniques and molecular modelling study of the inclusion complexes of the nootropic drug tenilsetam (CAS-997) in cyclodextrins , 1992 .

[82]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[83]  R. Behrend,et al.  I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd , 1905 .