A statistical method to downscale aggregated land use data and scenarios

This paper presents a method to downscale aggregated land use data based on statistical techniques. A purely spatial multinomial logistic regression (MNLR) model is proposed using observed fine resolution land use data. This model provides initial probability maps of land use presence, which are updated using aggregated land use data and an iterative procedure based on Bayes' theorem. The simplicity of the method as well as its low data requirements makes it easily reproducible. An example is shown using the CORINE land cover dataset (1990) to downscale future land use change scenarios (2020) for a small area in Belgium. The results from the MNLR as well as from the iterative procedure gave appropriate representation of land use patterns. The method was also useful in removing potential artificial border effects, which often arise when downscaling from adjacent spatial units. The resulting probability maps could be used for a variety of applications.

[1]  M. Rounsevell,et al.  The vulnerability of ecosystem services to land use change , 2006 .

[2]  Dawn C. Parker,et al.  Measuring pattern outcomes in an agent-based model of edge-effect externalities using spatial metrics , 2004 .

[3]  K. P. Overmarsa,et al.  Spatial autocorrelation in multi-scale land use models , 2003 .

[4]  Mark Rounsevell,et al.  The limitations of spatial land use data in environmental analysis , 2006 .

[5]  Piet Rietveld,et al.  LAND USE SCANNER: An integrated GIS based model for long term projections of land use in urban and rural areas , 1999, J. Geogr. Syst..

[6]  M. Wimberly,et al.  A multi-scale assessment of human and environmental constraints on forest land cover change on the Oregon (USA) coast range , 2004, Landscape Ecology.

[7]  T. Carter,et al.  Future scenarios of European agricultural land use: II. Projecting changes in cropland and grassland , 2005 .

[8]  Chandra R. Bhat,et al.  A MIXED SPATIALLY CORRELATED LOGIT MODEL: FORMULATION AND APPLICATION TO RESIDENTIAL CHOICE MODELING , 2004 .

[9]  J. Cihlar,et al.  From Land Cover to Land Use: A Methodology for Efficient Land Use Mapping over Large Areas , 2001 .

[10]  Hugh G. Lewis,et al.  Dealing with uncertainty in super-resolution land cover mapping , 2001 .

[11]  Paul Schot,et al.  Land use change modelling: current practice and research priorities , 2004 .

[12]  C. Peppler‐Lisbach,et al.  Predictive modelling of historical and recent land-use patterns , 2003 .

[13]  Pramod K. Varshney,et al.  Super-resolution land cover mapping using a Markov random field based approach , 2005 .

[14]  A. Veldkamp,et al.  Spatial autocorrelation in multi-scale land use models , 2003 .

[15]  R. G. Pontlus Quantification Error Versus Location Error in Comparison of Categorical Maps , 2006 .

[16]  D. D. French,et al.  Exploring spatial vegetation dynamics using logistic regression and a multinomial logit model , 2001 .

[17]  E. Lambin,et al.  Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model , 2001 .

[18]  S. Hoshino,et al.  A Theoretical Consideration on the Land-use Change Model for the Japan Case Study Area , 1997 .

[19]  T. D. Mitchell,et al.  Ecosystem Service Supply and Vulnerability to Global Change in Europe , 2005, Science.

[20]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[21]  M. D. A. Rounsevella,et al.  Future scenarios of European agricultural land use II . Projecting changes in cropland and grassland , 2005 .

[22]  P. Atkinson,et al.  Multiple-class land-cover mapping at the sub-pixel scale using a Hopfield neural network , 2001 .

[23]  Michael F. Goodchild,et al.  Development and test of an error model for categorical data , 1992, Int. J. Geogr. Inf. Sci..

[24]  A. Veldkamp,et al.  CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica , 1996 .

[25]  Roland Hiederer,et al.  Projected changes in mineral soil carbon of European forests, 1990–2100 , 2006 .

[26]  Frank Ewert,et al.  Technology development and climate change as drivers of future agricultural land use , 2006 .

[27]  Pete Smith,et al.  A coherent set of future land use change scenarios for Europe , 2006 .

[28]  Eric F. Lambin,et al.  Spatial modelling of deforestation in southern Cameroon - Spatial disaggregation of diverse deforestation processes , 1997 .

[29]  Jos Van Orshoven,et al.  The inventory-based approach for prediction of SOC-change following land use change , 2004 .

[30]  P. Atkinson,et al.  Mapping sub-pixel proportional land cover with AVHRR imagery , 1997 .

[31]  C. Heunks,et al.  Land cover characterization and change detection for environmental monitoring of pan-Europe , 2000 .

[32]  S. Fienberg An Iterative Procedure for Estimation in Contingency Tables , 1970 .

[33]  Hugh G. Lewis,et al.  Increasing the spatial resolution of agricultural land cover maps using a Hopfield neural network , 2003, Int. J. Geogr. Inf. Sci..

[34]  PETER H. VERBURG,et al.  Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model , 2002, Environmental management.

[35]  Gilles Gauthier,et al.  Interactions between land use, habitat use, and population increase in greater snow geese: what are the consequences for natural wetlands? , 2005 .

[36]  M. Rounsevell,et al.  Future scenarios of European agricultural land use: I. Estimating changes in crop productivity , 2005 .

[37]  Patrick Bogaert,et al.  Spatial analysis and modelling of land use distributions in Belgium , 2007, Comput. Environ. Urban Syst..

[38]  Piet Rietveld,et al.  Residential Construction, Land Use and the Environment. Simulations for the Netherlands Using a GIS-Based Land Use Model , 2001 .

[39]  Takeshi Arai,et al.  Empirical analysis for estimating land use transition potential functions - case in the Tokyo metropolitan region , 2004, Comput. Environ. Urban Syst..

[40]  Abolfazl Mohammadian,et al.  Applications of Spatial Multinomial Logit Model to Transportation Planning , 2003 .

[41]  P. Verburg,et al.  Downscaling of land use change scenarios to assess the dynamics of European landscapes , 2006 .

[42]  Daniel P. McMillen,et al.  An empirical model of urban fringe land use , 1989 .