Population based Local Search for university course timetabling problems

[1]  Reza Abbasian,et al.  A hierarchical parallel genetic approach for the graph coloring problem , 2013, Applied Intelligence.

[2]  R. Qu,et al.  Adaptive selection of heuristics for assigning time slots and rooms in exam timetables , 2013, Applied intelligence (Boston).

[3]  Rong Qu,et al.  A hybrid algorithm for constrained portfolio selection problems , 2013, Applied Intelligence.

[4]  Hossein Rajabalipour Cheshmehgaz,et al.  Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems , 2013, Applied Intelligence.

[5]  Graham Kendall,et al.  A graph coloring constructive hyper-heuristic for examination timetabling problems , 2012, Applied Intelligence.

[6]  H. Topcuoglu,et al.  Performance evaluation of evolutionary heuristics in dynamic environments , 2012, Applied Intelligence.

[7]  Graham Kendall,et al.  Grammatical Evolution of Local Search Heuristics , 2012, IEEE Transactions on Evolutionary Computation.

[8]  He Jiang,et al.  Hyper-Heuristics with Low Level Parameter Adaptation , 2012, Evolutionary Computation.

[9]  Mohammed Azmi Al-Betar,et al.  A harmony search algorithm for university course timetabling , 2010, Annals of Operations Research.

[10]  Graham Kendall,et al.  A honey-bee mating optimization algorithm for educational timetabling problems , 2012, Eur. J. Oper. Res..

[11]  Anmar Abuhamdah,et al.  MPCA-ARDA for solving course timetabling problems , 2011, 2011 3rd Conference on Data Mining and Optimization (DMO).

[12]  Masri Ayob,et al.  An Elitist-Ant System for Solving the Post-Enrolment Course Timetabling Problem , 2010, FGIT-DTA/BSBT.

[13]  Salwani Abdullah,et al.  Controlling Multi Algorithms Using Round Robin for University Course Timetabling Problem , 2010, FGIT-DTA/BSBT.

[14]  Masri Ayob,et al.  Adaptive randomized descent algorithm for solving course timetabling problems , 2010 .

[15]  Salwani Abdullah,et al.  Fish Swarm Intelligent Algorithm for the Course Timetabling Problem , 2010, RSKT.

[16]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[17]  Masri Ayob,et al.  Multi-Neighbourhood Particle Collision Algorithm for solving course timetabling problems , 2009, 2009 2nd Conference on Data Mining and Optimization.

[18]  Salwani Abdullah,et al.  Incorporating tabu search into memetic approach for enrolment-based course timetabling problems , 2009, 2009 2nd Conference on Data Mining and Optimization.

[19]  Salwani Abdullah,et al.  A Hybridization of Electromagnetic-Like Mechanism and Great Deluge for Examination Timetabling Problems , 2009, Hybrid Metaheuristics.

[20]  Edmund K. Burke,et al.  Analyzing the landscape of a graph based hyper-heuristic for timetabling problems , 2009, GECCO.

[21]  Joe Henry Obit,et al.  Non-linear great deluge with learning mechanism for solving the course timetabling problem , 2009 .

[22]  Joe Henry Obit,et al.  Evolutionary Non-linear Great Deluge for University Course Timetabling , 2009, HAIS.

[23]  S. Abdullah,et al.  Generating University Course Timetable Using Genetic Algorithms and Local Search , 2008, 2008 Third International Conference on Convergence and Hybrid Information Technology.

[24]  D. Landa-Silva,et al.  Great deluge with non-linear decay rate for solving course timetabling problems , 2008, 2008 4th International IEEE Conference Intelligent Systems.

[25]  M.Y. Javed,et al.  A Hybrid Approach for Course Scheduling Inspired by Die-hard Co-operative Ant Behavior , 2007, 2007 IEEE International Conference on Automation and Logistics.

[26]  Edmund K. Burke,et al.  A hybrid evolutionary approach to the university course timetabling problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[27]  Michel Gendreau,et al.  Metaheuristics: Progress in Complex Systems Optimization , 2007 .

[28]  Paul McMullan,et al.  An Extended Implementation of the Great Deluge Algorithm for Course Timetabling , 2007, International Conference on Computational Science.

[29]  Mauro Birattari,et al.  An effective hybrid algorithm for university course timetabling , 2006, J. Sched..

[30]  H. Asmuni Fuzzy multiple heuristic orderings for course timetabling , 2005 .

[31]  Dennis J. Sweeney,et al.  Statistics for Business and Economics (with Student CD-ROM, iPod Key Term, and InfoTrac ) , 2005 .

[32]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[33]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[34]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[35]  Michael Sampels,et al.  Ant Algorithms for the University Course Timetabling Problem with Regard to the State-of-the-Art , 2003, EvoWorkshops.

[36]  Michael Sampels,et al.  A MAX-MIN Ant System for the University Course Timetabling Problem , 2002, Ant Algorithms.

[37]  Andrea Schaerf,et al.  Local search techniques for large high school timetabling problems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[38]  Andrea Schaerf,et al.  A Survey of Automated Timetabling , 1999, Artificial Intelligence Review.

[39]  Geoffrey C. Fox,et al.  A Comparison of Annealing Techniques for Academic Course Scheduling , 1997, PATAT.

[40]  Kathryn A. Dowsland,et al.  Variants of simulated annealing for the examination timetabling problem , 1996, Ann. Oper. Res..

[41]  D. Costa,et al.  A tabu search algorithm for computing an operational timetable , 1994 .

[42]  A. Afifi,et al.  Statistical analysis - a computer oriented approach , 1973 .

[43]  Edmund K. Burke,et al.  The practice and theory of automated timetabling , 2014, Ann. Oper. Res..

[44]  Mohammed Azmi Al-Betar,et al.  A Harmony Search with Multi-pitch Adjusting Rate for the University Course Timetabling , 2010, Recent Advances In Harmony Search Algorithm.

[45]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[46]  Edmund K. Burke,et al.  Using a Randomised Iterative Improvement Algorithm with Composite Neighbourhood Structures for the University Course Timetabling Problem , 2007, Metaheuristics.

[47]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[48]  E. Burke,et al.  AN INVESTIGATION OF VARIABLE NEIGHBOURHOOD SEARCH FOR UNIVERSITY COURSE TIMETABLING , 2005 .

[49]  P. J. Bernhard,et al.  Solving combinatorial optimization problems using a new algorithm based on gravitational attraction , 2004 .

[50]  Sanja Petrovic,et al.  A time-predefined approach to course timetabling , 2003 .

[51]  Michael Sampels,et al.  A {$\cal MAX$}-{$\cal MIN$} Ant System for the University Course Timetabling Problem , 2002 .

[52]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .