Model fractional quantum Hall states and Jack polynomials.
暂无分享,去创建一个
[1] B. Andrei Bernevig,et al. Generalized clustering conditions of Jack polynomials at negative Jack parameter α , 2007, 0711.3062.
[2] Steven H. Simon,et al. Construction of a paired wave function for spinless electrons at filling fractionν=2∕5 , 2007 .
[3] S. Simon,et al. Generalized quantum Hall projection Hamiltonians , 2006, cond-mat/0608378.
[4] Boris Feigin,et al. A differential ideal of symmetric polynomials spanned by Jack polynomials at rβ = -(r=1)/(k+1) , 2001 .
[5] Jennifer Morse,et al. Determinantal Expression and Recursion for Jack Polynomials , 1999, Electron. J. Comb..
[6] N. Read,et al. Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level , 1998, cond-mat/9809384.
[7] Michel Lassalle,et al. Coefficients binomiaux généralisés et polynômes de Macdonald , 1998 .
[8] T. Oshima,et al. Commuting families of differential operators invariant under the action of a Weyl group , 1995 .
[9] M. Gaudin,et al. Yang-Baxter equation in long-range interacting systems , 1993 .
[10] F. Wilczek,et al. Paired Hall states , 1992 .
[11] Gregory W. Moore,et al. Nonabelions in the fractional quantum Hall effect , 1991 .
[12] R. Stanley. Some combinatorial properties of Jack symmetric functions , 1989 .
[13] Jain,et al. Composite-fermion approach for the fractional quantum Hall effect. , 1989, Physical review letters.
[14] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .
[15] V. Dotsenko. Critical behaviour and associated conformal algebra of the Z3 Potts model , 1984 .
[16] F. Haldane,et al. Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States , 1983 .
[17] R. Laughlin. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .