Terrain Classification and Classifier Fusion for Planetary Exploration Rovers

Knowledge of the physical properties of terrain surrounding a planetary exploration rover can be used to allow a rover system to fully exploit its mobility capabilities. Here a study of multi-sensor terrain classification for planetary rovers in Mars and Mars-like environments is presented. Two classification algorithms for color, texture, and range features are presented based on maximum likelihood estimation and support vector machines. In addition, a classification method based on vibration features derived from rover wheel-terrain interaction is briefly described. Two techniques for merging the results of these "low-level" classifiers are presented that rely on Bayesian fusion and meta-classifier fusion. The performance of these algorithms is studied using images from NASA's mars exploration rover mission and through experiments on a four-wheeled test-bed rover operating in Mars-analog terrain. It is shown that accurate terrain classification can be achieved via classifier fusion from visual and tactile features.

[1]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[2]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[4]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .

[5]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[6]  Padhraic Smyth,et al.  Clustering Using Monte Carlo Cross-Validation , 1996, KDD.

[7]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[8]  Terrance L. Huntsberger,et al.  Wavelet-based fractal signature analysis for automatic target recognition , 1998 .

[9]  Robert Mandelbaum,et al.  Real-time stereo processing, obstacle detection, and terrain estimation from vehicle-mounted stereo cameras , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[10]  Aleksandra Mojsilovic,et al.  On the Selection of an Optimal Wavelet Basis for Texture Characterization , 1998, ICIP.

[11]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Roberto Manduchi,et al.  Independent component analysis of textures , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[13]  Roberto Manduchi,et al.  Bayesian fusion of color and texture segmentations , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  Roberto Manduchi,et al.  Terrain perception for DEMO III , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[16]  V. Gulick,et al.  LANDER DETECTION AND IDENTIFICATION OF HYDROTHERMAL DEPOSITS , 2000 .

[17]  Christopher Rasmussen,et al.  Laser Range-, Color-, and Texture-based Classiers for Segmenting Marginal Roads , 2001, CVPR 2001.

[18]  J. Garvin,et al.  Mars exploration , 2001, Nature.

[19]  E. Mjolsness,et al.  AUTONOMOUS ROCK DETECTION FOR MARS TERRAIN , 2001 .

[20]  Steven Dubowsky,et al.  Terrain estimation for high-speed rough-terrain autonomous vehicle navigation , 2002, SPIE Defense + Commercial Sensing.

[21]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[22]  Roberto Manduchi,et al.  A Study on Bayes Feature Fusion for Image Classification , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[23]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[24]  Martial Hebert,et al.  Sensor and classifier fusion for outdoor obstacle detection: an application of data fusion to autonomous off-road navigation , 2003, 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings..

[25]  Terrence Fong,et al.  Far-field terrain evaluation using geometric and toposemantic vision , 2004 .

[26]  Christopher Allen Brooks,et al.  Terrain identification methods for planetary exploration rovers , 2004 .

[27]  Martial Hebert,et al.  Classifier fusion for outdoor obstacle detection , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[28]  Roberto Manduchi,et al.  Learning Outdoor Color Classification from Just One Training Image , 2004, ECCV.

[29]  L. Matthies,et al.  Enhanced real-time stereo using bilateral filtering , 2004 .

[30]  Martial Hebert,et al.  Natural terrain classification using 3-d ladar data , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[31]  Carl A. Moore,et al.  TERRAIN ESTIMATION USING INTERNAL SENSORS , 2004 .

[32]  Roy D. Wallen,et al.  The Illustrated Wavelet Transform Handbook , 2004 .

[33]  N.M. Rajpoot,et al.  Wavelets and support vector machines for texture classification , 2004, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[34]  Alonzo Kelly,et al.  Toward Reliable Off Road Autonomous Vehicles Operating in Challenging Environments , 2006, Int. J. Robotics Res..

[35]  Helge J. Ritter,et al.  The Cyborg Astrobiologist: Scouting Red Beds for Uncommon Features with Geological Significance , 2005, ArXiv.

[36]  D. Wettergreen,et al.  Automatic detection and classification of features of geologic interest , 2005, 2005 IEEE Aerospace Conference.

[37]  Aaron C. Courville,et al.  Interacting Markov Random Fields for Simultaneous Terrain Modeling and Obstacle Detection , 2005, Robotics: Science and Systems.

[38]  R. Castano,et al.  Current results from a rover science data analysis system , 2005, 2005 IEEE Aerospace Conference.

[39]  Karl Iagnemma,et al.  Vibration-based terrain classification for planetary exploration rovers , 2005, IEEE Transactions on Robotics.

[40]  Roberto Manduchi,et al.  Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation , 2005, Auton. Robots.

[41]  James M. Rehg,et al.  Traversability classification using unsupervised on-line visual learning for outdoor robot navigation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[42]  Pietro Perona,et al.  Slip Prediction Using Visual Information , 2006, Robotics: Science and Systems.

[43]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[44]  Pietro Perona,et al.  Learning to predict slip for ground robots , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[45]  Gary Witus,et al.  Terrain characterization and classification with a mobile robot , 2006, J. Field Robotics.

[46]  J. Andrew Bagnell,et al.  Improving robot navigation through self‐supervised online learning , 2006, J. Field Robotics.

[47]  J.J. Biesiadecki,et al.  The Mars Exploration Rover surface mobility flight software driving ambition , 2006, 2006 IEEE Aerospace Conference.