SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results

[1] This paper is intended as an introduction to several companion papers describing the results obtained by the SPICAM instrument on board Mars Express orbiter. SPICAM is a lightweight (4.7 kg) UV-IR dual spectrometer dedicated primarily to the study of the atmosphere of Mars. The SPICAM IR spectrometer and its results are described in another companion paper. SPICAM is the first instrument to perform stellar occultations at Mars, and its UV imaging spectrometer (118–320 nm, resolution ∼1.5 nm, intensified CCD detector) was designed primarily to obtain atmospheric vertical profiles by stellar occultation. The wavelength range was dictated by the strong UV absorption of CO2 (λ < 200 nm) and the strong Hartley ozone absorption (220–280 nm). The UV spectrometer is described in some detail. The capacity to orient the spacecraft allows a great versatility of observation modes: nadir and limb viewing (both day and night) and solar and stellar occultations, which are briefly described. The absolute calibration is derived from the observation of UV-rich stars. An overview of a number of scientific results is presented, already published or found in more detail as companion papers in this special section. SPICAM UV findings are relevant to CO2, ozone, dust, cloud vertical profiles, the ozone column, dayglow, and nightglow. This paper is particularly intended to provide the incentive for SPICAM data exploitation, available to the whole scientific community in the ESA data archive, and to help the SPICAM data users to better understand the instrument and the various data collection modes, for an optimized scientific return.

[1]  A. Fedorova,et al.  Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions , 2006 .

[2]  Franck Lefèvre,et al.  Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations , 2006 .

[3]  F. Leblanc,et al.  Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express , 2006 .

[4]  J. P. Dubois,et al.  SPICAM IR acousto-optic spectrometer experiment on Mars Express , 2006 .

[5]  F. Montmessin,et al.  Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM , 2006 .

[6]  F. Montmessin,et al.  Stellar Occultations at UV Wavelengths by the SPICAM Instrument: Retrieval and Analysis of Martian Haze Profiles , 2006 .

[7]  F. Lefévre,et al.  Global distribution of total ozone on Mars from SPICAM/MEX UV measurements , 2006 .

[8]  D. Fussen,et al.  Stellar occultations observed by SPICAM on Mars Express , 2006 .

[9]  F. Lefévre,et al.  Observation of O2 1.27 μm dayglow by SPICAM IR: Seasonal distribution for the first Martian year of Mars Express , 2006 .

[10]  D. Fussen,et al.  Subvisible CO2 ice clouds detected in the mesosphere of Mars , 2006 .

[11]  F. Forget,et al.  Mars atmosphere density and temperatures between 60 and 130 km observed by Mars Express SPICAM stellar occultation , 2006 .

[12]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[13]  D. Fussen,et al.  First simultaneous global measurements of nighttime stratospheric NO2 and NO3 observed by Global Ozone Monitoring by Occultation of Stars (GOMOS)/Envisat in 2003 , 2005 .

[14]  Oleg Korablev,et al.  Discovery of an aurora on Mars , 2005, Nature.

[15]  Oleg Korablev,et al.  Nightglow in the Upper Atmosphere of Mars and Implications for Atmospheric Transport , 2005, Science.

[16]  T. Encrenaz,et al.  Hydrogen peroxide on Mars: evidence for spatial and seasonal variations , 2004 .

[17]  Franck Lefèvre,et al.  Three-dimensional modeling of ozone on Mars , 2004 .

[18]  P. Drossart,et al.  Perennial water ice identified in the south polar cap of Mars , 2004, Nature.

[19]  M. J. Richterc,et al.  Hydrogen peroxide on Mars : evidence for spatial and seasonal variatio , 2004 .

[20]  J. Forbes,et al.  Global Measurements of the Mars Upper Atmosphere: In Situ Accelerometer Measurements from Mars Odyssey 2001 and Mars Global Surveyor , 2003 .

[21]  E. Chassefie Vertical Structure and Size Distributions of Martian Aerosols from Solar Occultation Measurements , 2002 .

[22]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[23]  F. Leblanc,et al.  Sputtering of the Martian atmosphere by solar wind pick-up ions , 2001 .

[24]  J. Dubois,et al.  Occultation of stars in the UV: Study of the atmosphere of Mars , 2001 .

[25]  J. P. Dubois,et al.  The study of the martian atmosphere from top to bottom with SPICAM light on mars express , 2000 .

[26]  David P. Hinson,et al.  Initial results from radio occultation measurements with Mars Global Surveyor , 1999 .

[27]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[28]  P. Christensen,et al.  Mars Global Surveyor TES results: atmospheric thermal structure retrieved from limb measurements. , 1999 .

[29]  J. Schofield,et al.  Results of the Mars Pathfinder atmospheric structure investigation , 1999 .

[30]  Nicolas Thomas,et al.  Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data , 1999 .

[31]  R. Clancy,et al.  Minimal Aerosol Loading and Global Increases in Atmospheric Ozone during the 1996–1997 Martian Northern Spring Season , 1999 .

[32]  R. Clancy,et al.  Dynamical properties of Mars water ice clouds and their interactions with atmospheric dust and radiation , 1999 .

[33]  P. Christensen,et al.  MGS TES Results: Characterization of the Martian Atmospheric Thermal Structure , 1998 .

[34]  Esposito,et al.  The structure of the upper atmosphere of mars: In situ accelerometer measurements from mars global surveyor , 1998, Science.

[35]  H. Keller,et al.  Properties of dust in the Mars atmosphere: a revised analysis of Phobos/KRFM data , 1997 .

[36]  R. John Wilson,et al.  A general circulation model simulation of the Martian polar warming , 1997 .

[37]  Oleg Korablev,et al.  Vertical Distribution of Water in the Near-Equatorial Troposphere of Mars: Water Vapor and Clouds , 1997 .

[38]  Duane O. Muhleman,et al.  WATER VAPOR SATURATION AT LOW ALTITUDES AROUND MARS APHELION : A KEY TO MARS CLIMATE ? , 1996 .

[39]  D. J. Oldham,et al.  Using stars for remote sensing of the Earth's stratosphere. , 1994, Applied optics.

[40]  A. Anbar,et al.  A photochemical model of the martian atmosphere. , 1994, Icarus.

[41]  O. Korablev,et al.  Vertical Structure of Martian Dust Measured by Solar Infrared Occultations from the Phobos Spacecraft , 1993 .

[42]  V. A. Krasnopolsky,et al.  Photochemistry of the Martian Atmosphere (Mean Conditions) , 1993 .

[43]  J. Blamont,et al.  First Detection of Ozone in the Middle Atmosphere of Mars from Solar Occultation Measurements , 1992 .

[44]  D. Hunten,et al.  Aeronomy of the current Martian atmosphere. , 1992 .

[45]  J. Blamont,et al.  Infrared solar occultation sounding of the Martian atmosphere by the Phobos spacecraft , 1991 .

[46]  R. Dickinson,et al.  The Mars thermosphere: 2. General circulation with coupled dynamics and composition , 1990 .

[47]  Donald M. Hunten,et al.  Study of planetary atmospheres by absorptive occultations , 1990 .

[48]  V. I. Moroz,et al.  Solar occultation spectroscopic measurements of the martian atmosphere at 1.9 and 3.7 μm , 1989, Nature.

[49]  V. I. Moroz,et al.  Vertical profiles of dust and ozone in the martian atmosphere deduced from solar occultation measurements , 1989, Nature.

[50]  Duane O. Muhleman,et al.  Global changes in the 0–70 km thermal structure of the Mars atmosphere derived from 1975 to 1989 microwave CO spectra , 1989 .

[51]  Statistical performance of the intensified charged coupled device. , 1986, Applied optics.

[52]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[53]  A. Stewart,et al.  Ultraviolet Night Airglow of Venus , 1979, Science.

[54]  P. Feldman,et al.  Identification of the UV nightglow from Venus , 1979, Nature.

[55]  L. Esposito,et al.  Ultraviolet Spectroscopy of Venus: Initial Results from the Pioneer Venus Orbiter , 1979, Science.

[56]  M. McElroy,et al.  Photochemistry of the Martian atmosphere , 1977 .

[57]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .

[58]  A. Seiff,et al.  Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .

[59]  W. Traub,et al.  Detection of O2 dayglow emission from Mars and the Martian ozone abundance , 1976 .

[60]  G. Anderson,et al.  Mariner 9 Ultraviolet Spectrometer Experiment: Seasonal Variation of Ozone on Mars , 1973, Science.

[61]  A. Lane,et al.  Mariner 9 ultraviolet spectrometer experiment: Structure of Mars' upper atmosphere , 1972 .

[62]  D. Hunten,et al.  Spectroscopy and Acronomy of O2 on Mars , 1972 .

[63]  C. Hord,et al.  Mariner Ultraviolet Spectrometer: Topography and Polar Cap , 1971, Science.

[64]  G. Anderson,et al.  Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Upper atmosphere data , 1971 .

[65]  Charles A. Barth,et al.  Ultraviolet Emissions Observed near Venus from Mariner V , 1967, Science.