Block-based selection random forest for texture classification using multi-fractal spectrum feature

[1]  Odemir Martinez Bruno,et al.  Gabor wavelets combined with volumetric fractal dimension applied to texture analysis , 2014, Pattern Recognit. Lett..

[2]  Francesco Bianconi,et al.  General Framework for Rotation Invariant Texture Classification Through Co-occurrence of Patterns , 2014, Journal of Mathematical Imaging and Vision.

[3]  Ponnuthurai N. Suganthan,et al.  Random Forests with ensemble of feature spaces , 2014, Pattern Recognit..

[4]  Sharath Chandra Guntuku,et al.  Big Data Analytics framework for Peer-to-Peer Botnet detection using Random Forests , 2014, Inf. Sci..

[5]  Simone Calderara,et al.  Detection of static groups and crowds gathered in open spaces by texture classification , 2014, Pattern Recognit. Lett..

[6]  Yu Luo,et al.  Lacunarity Analysis on Image Patterns for Texture Classification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Odemir Martinez Bruno,et al.  Fractal descriptors based on the probability dimension: A texture analysis and classification approach , 2014, Pattern Recognit. Lett..

[8]  Ash Booth,et al.  Automated trading with performance weighted random forests and seasonality , 2014, Expert Syst. Appl..

[9]  Piotr Duda,et al.  The CART decision tree for mining data streams , 2014, Inf. Sci..

[10]  Musa Mammadov,et al.  Attribute weighted Naive Bayes classifier using a local optimization , 2014, Neural Computing and Applications.

[11]  Emilio Corchado,et al.  A survey of multiple classifier systems as hybrid systems , 2014, Inf. Fusion.

[12]  Shweta Taneja,et al.  An Enhanced K-Nearest Neighbor Algorithm Using Information Gain and Clustering , 2014, 2014 Fourth International Conference on Advanced Computing & Communication Technologies.

[13]  Giovanni Montana,et al.  Random forests on distance matrices for imaging genetics studies , 2013, Statistical applications in genetics and molecular biology.

[14]  Xiao Liu,et al.  Semi-supervised Node Splitting for Random Forest Construction , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  F. Perronnin,et al.  Image Classification with the Fisher Vector: Theory and Practice , 2013, International Journal of Computer Vision.

[16]  John K. Williams Using random forests to diagnose aviation turbulence , 2013, Machine Learning.

[17]  A. Boulesteix,et al.  An AUC-based permutation variable importance measure for random forests , 2013, BMC Bioinformatics.

[18]  Yunming Ye,et al.  Stratified sampling for feature subspace selection in random forests for high dimensional data , 2013, Pattern Recognit..

[19]  Rong Xiao,et al.  Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Fan Yang,et al.  Margin optimization based pruning for random forest , 2012, Neurocomputing.

[21]  Robert Azencott,et al.  Rigid-Motion-Invariant Classification of 3-D Textures , 2012, IEEE Transactions on Image Processing.

[22]  Yunming Ye,et al.  Classifying Very High-Dimensional Data with Random Forests Built from Small Subspaces , 2012, Int. J. Data Warehous. Min..

[23]  Paul W. Fieguth,et al.  Texture Classification from Random Features , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Hongbin Zha,et al.  Sorted Random Projections for robust texture classification , 2011, 2011 International Conference on Computer Vision.

[25]  Albert Y. Zomaya,et al.  A Review of Ensemble Methods in Bioinformatics , 2010, Current Bioinformatics.

[26]  Yong Xu,et al.  A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Gérard Biau,et al.  Analysis of a Random Forests Model , 2010, J. Mach. Learn. Res..

[28]  Stéphan Clémençon,et al.  Tree-Based Ranking Methods , 2009, IEEE Transactions on Information Theory.

[29]  Yong Xu,et al.  Viewpoint Invariant Texture Description Using Fractal Analysis , 2009, International Journal of Computer Vision.

[30]  Andrew Zisserman,et al.  Texture classification with minimal training images , 2008, 2008 19th International Conference on Pattern Recognition.

[31]  Juan José Rodríguez Diez,et al.  Rotation Forest: A New Classifier Ensemble Method , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[33]  Marko Robnik-Sikonja,et al.  Improving Random Forests , 2004, ECML.

[34]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[35]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[37]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[39]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[40]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[41]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[43]  N. D. Freitas,et al.  Narrowing the Gap: Random Forests In Theory and In Practice , 2014, ICML.

[44]  Carolin Strobl,et al.  A new variable importance measure for random forests with missing data , 2012, Statistics and Computing.

[45]  Bo Fu,et al.  Rapid-transform based rotation invariant descriptor for texture classification under non-ideal conditions , 2014, Pattern Recognit..

[46]  Gesellschaft für Klassifikation. Jahrestagung,et al.  Data Analysis, Machine Learning and Knowledge Discovery - Proceedings of the 36th Annual Conference of the Gesellschaft für Klassifikation e. V., Hildesheim, Germany, August 2012 , 2014, GfKl.

[47]  Stéphan Clémençon,et al.  Ranking forests , 2013, J. Mach. Learn. Res..

[48]  Simon Bernard,et al.  Random Forest Classifiers : A Survey and Future Research Directions , 2013 .

[49]  Stefan Frenzel,et al.  Two-Step Linear Discriminant Analysis for Classification of EEG Data , 2012, GfKl.

[50]  Leslie S. Smith,et al.  Feature subset selection in large dimensionality domains , 2010, Pattern Recognit..

[51]  Gonzalo Martínez-Muñoz,et al.  Out-of-bag estimation of the optimal sample size in bagging , 2010, Pattern Recognit..

[52]  L. Breiman Random Forests , 2001, Machine Learning.

[53]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[54]  Marko Robnik,et al.  Improving Random Forests , 2004 .

[55]  K. Falconer Techniques in fractal geometry , 1997 .

[56]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Anil K. Jain,et al.  An Intrinsic Dimensionality Estimator from Near-Neighbor Information , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.