Fast nonnegative deconvolution for spike train inference from population calcium imaging.

Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from a raw fluorescence movie is a nontrivial problem. This work presents a fast nonnegative deconvolution filter to infer the approximately most likely spike train of each neuron, given the fluorescence observations. This algorithm outperforms optimal linear deconvolution (Wiener filtering) on both simulated and biological data. The performance gains come from restricting the inferred spike trains to be positive (using an interior-point method), unlike the Wiener filter. The algorithm runs in linear time, and is fast enough that even when simultaneously imaging >100 neurons, inference can be performed on the set of all observed traces faster than real time. Performing optimal spatial filtering on the images further refines the inferred spike train estimates. Importantly, all the parameters required to perform the inference can be estimated using only the fluorescence data, obviating the need to perform joint electrophysiological and imaging calibration experiments.

[1]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Ivona Brasnjevic,et al.  Imaging in Neuroscience and Development: A Laboratory Manual, Yuste Rafael, Konnerth Arthur (Eds.). Cold Spring Harbor Laboratory Press (2005), (Price: US$ 159.00, ISBN 0-87969-689-3) , 2006 .

[4]  J. Conchello,et al.  Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Barak A. Pearlmutter,et al.  Convolutive Non-Negative Matrix Factorisation with a Sparseness Constraint , 2006 .

[6]  Oliver Griesbeck,et al.  Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. , 2007, Cell calcium.

[7]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[8]  T. Holy,et al.  Fast Three-Dimensional Fluorescence Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy , 2008, Neuron.

[9]  Florian Steinke,et al.  Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.

[10]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[11]  R. Yuste,et al.  Networks of Coactive Neurons in Developing Layer 1 , 1998, Neuron.

[12]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[13]  Daniel D. Lee,et al.  Nonnegative deconvolution for time of arrival estimation , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[15]  J. Gallant,et al.  Complete functional characterization of sensory neurons by system identification. , 2006, Annual review of neuroscience.

[16]  Sébastien Joucla,et al.  Quantitative estimation of calcium dynamics from ratiometric measurements: a direct, nonratioing method. , 2010, Journal of neurophysiology.

[17]  Brendon O. Watson,et al.  Internal Dynamics Determine the Cortical Response to Thalamic Stimulation , 2005, Neuron.

[18]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[19]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[20]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.

[21]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[22]  F. Helmchen,et al.  In vivo calcium imaging of neural network function. , 2007, Physiology.

[23]  Wei Wu,et al.  A new look at state-space models for neural data , 2010, Journal of Computational Neuroscience.

[24]  L. N. Vicente,et al.  A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables , 1994 .

[25]  Todd Anderson,et al.  Elastic source selection for in vivo imaging of neuronal ensembles , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[26]  R. Yuste,et al.  Dynamics of Spontaneous Activity in Neocortical Slices , 2001, Neuron.

[27]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[28]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[29]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[30]  John P. Cunningham,et al.  Fast Gaussian process methods for point process intensity estimation , 2008, ICML '08.

[31]  Christophe Andrieu,et al.  Bayesian deconvolution of noisy filtered point processes , 2001, IEEE Trans. Signal Process..

[33]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[34]  R. Koenker,et al.  QUASI-CONCAVE DENSITY ESTIMATION , 2010, 1007.4013.

[35]  Shin Nagayama,et al.  In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits , 2007, Neuron.

[36]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[37]  Karel Svoboda,et al.  Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators , 2004, The Journal of Neuroscience.

[38]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[39]  Lucas Sjulson,et al.  Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory. , 2007, Physiology.

[40]  William H. Press,et al.  Numerical recipes in C , 2002 .

[41]  Joshua T. Vogelstein,et al.  A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data , 2011, 1107.4228.

[42]  Rafael Yuste,et al.  UP States Protect Ongoing Cortical Activity from Thalamic Inputs , 2008, PloS one.

[43]  Damian J. Wallace,et al.  Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor , 2008, Nature Methods.

[44]  Mark Tygert,et al.  A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..

[45]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[46]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[47]  Barak A. Pearlmutter,et al.  Convolutive Non-Negative Matrix Factorisation with a Sparseness Constraint , 2006, 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing.

[48]  Norio Matsuki,et al.  Fast and accurate detection of action potentials from somatic calcium fluctuations. , 2008, Journal of neurophysiology.

[49]  R. Yuste,et al.  Detecting action potentials in neuronal populations with calcium imaging. , 1999, Methods.

[50]  Alexander Borst,et al.  In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies , 2005, The Journal of Neuroscience.

[51]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[52]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.