About P systems with symport/antiport

It is proved that four membranes suffice to a variant of P systems with symport/antiport with maximal parallelism to generate all recursively enumerable sets of numbers. P systems with symport/antiport without maximal parallelism are also studied, considering two termination criteria.

[1]  Grzegorz Rozenberg,et al.  Aspects of Molecular Computing , 2004, Lecture Notes in Computer Science.

[2]  Pierluigi Frisco,et al.  The conformon-P system: a molecular and cell biology-inspired computability model , 2004, Theor. Comput. Sci..

[3]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[4]  Gheorghe Paun,et al.  On Synchronization in P Systems , 1999, Fundam. Informaticae.

[5]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[6]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[7]  Andrei Paun,et al.  On the Power of P Systems with Symport Rules , 2002, J. Univers. Comput. Sci..

[8]  Andrei Paun,et al.  ReMembrane Systems with Coupled Transport: Universality and Normal Forms , 2002, Fundam. Informaticae.

[9]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[10]  Grzegorz Rozenberg,et al.  Aspects of molecular computing : essays dedicated to Tom Head on the occasion of his 70th birthday , 2004 .

[11]  Andrei Paun,et al.  Universality of Minimal Symport/Antiport: Five Membranes Suffice , 2003, Workshop on Membrane Computing.

[12]  Hendrik Jan Hoogeboom,et al.  P systems with symport/antiport simulating counter automata , 2004, Acta Informatica.

[13]  Andrei Paun,et al.  On the Universality of P Systems with Minimal Symport/Antiport Rules , 2004, Aspects of Molecular Computing.