Review of robust multivariate statistical methods in high dimension.

General ideas of robust statistics, and specifically robust statistical methods for calibration and dimension reduction are discussed. The emphasis is on analyzing high-dimensional data. The discussed methods are applied using the packages chemometrics and rrcov of the statistical software environment R. It is demonstrated how the functions can be applied to real high-dimensional data from chemometrics, and how the results can be interpreted.

[1]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[2]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[3]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[4]  S. J. Devlin,et al.  Robust Estimation of Dispersion Matrices and Principal Components , 1981 .

[5]  C. Croux,et al.  Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies , 2000 .

[6]  N. Campbell Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation , 1980 .

[7]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[8]  M. Hubert,et al.  High-Breakdown Robust Multivariate Methods , 2008, 0808.0657.

[9]  Steven D. Brown Introduction to Multivariate Statistical Analysis in Chemometrics , 2010 .

[10]  Anthony B. Atkinson,et al.  2. Outliers in Statistical Data , 1995 .

[11]  Peter Filzmoser,et al.  Robust and classical PLS regression compared , 2010 .

[12]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[15]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[16]  S. Frosch Møller,et al.  Robust methods for multivariate data analysis , 2005 .

[17]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[18]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[19]  D. G. Simpson,et al.  Robust principal component analysis for functional data , 2007 .

[20]  Peter Filzmoser,et al.  An Object-Oriented Framework for Robust Multivariate Analysis , 2009 .

[21]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[22]  Peter Filzmoser,et al.  Outlier identification in high dimensions , 2008, Comput. Stat. Data Anal..

[23]  P. Filzmoser,et al.  Repeated double cross validation , 2009 .

[24]  B. Liebmann,et al.  Determination of glucose and ethanol in bioethanol production by near infrared spectroscopy and chemometrics. , 2009, Analytica chimica acta.

[25]  Ricardo A. Maronna,et al.  Principal Components and Orthogonal Regression Based on Robust Scales , 2005, Technometrics.

[26]  P. Filzmoser,et al.  Algorithms for Projection-Pursuit Robust Principal Component Analysis , 2007 .

[27]  Peter Filzmoser,et al.  Partial robust M-regression , 2005 .

[28]  M. Hubert,et al.  Robust methods for partial least squares regression , 2003 .

[29]  Mia Hubert,et al.  ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.

[30]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[31]  Peter Filzmoser,et al.  Regressions , 2019, Energy Transfers by Convection.

[32]  Gérard Antille,et al.  Stability of robust and non-robust principal components analysis , 1990 .

[33]  Peter Filzmoser,et al.  A comparison of algorithms for the multivariate L1-median , 2010, Comput. Stat..

[34]  Jafar A. Khan,et al.  Robust Linear Model Selection Based on Least Angle Regression , 2007 .

[35]  Christophe Croux,et al.  High breakdown estimators for principal components: the projection-pursuit approach revisited , 2005 .

[36]  Guoying Li,et al.  Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo , 1985 .

[37]  K. Gabriel,et al.  The biplot graphic display of matrices with application to principal component analysis , 1971 .

[38]  K. Janssens,et al.  Composition of 15-17th century archaeological glass vessels excavated in Antwerp, Belgium , 1998 .