39Ar recoil artifacts in chloritized biotite

[1]  K. Foland,et al.  On the significance of argon release from biotite and amphibole during 40Ar/39Ar vacuum heating , 1988 .

[2]  T. Onstott,et al.  Argon isotopic zoning in mantle phlogopite , 1988 .

[3]  T. Harrison,et al.  Multiple trapped argon isotope components revealed by 40AR39AR isochron analysis , 1988 .

[4]  J. Miller,et al.  Radiogenic argon and major-element loss from biotite during natural weathering: A geochemical approach to the interpretation of potassium—argon ages of detrital biotite , 1988 .

[5]  S. Krishnaswami,et al.  Comparative study of 222Rn, 40Ar, 39Ar and 37Ar leakage from rocks and minerals: Implications for the role of nanopores in gas transport through natural silicates , 1988 .

[6]  C. Lo Chloritization of biotite in the granitic rocks of eastern Taiwan and its implications for isotope geochronology , 1988 .

[7]  T. Onstott,et al.  Argon retentivity of hornblendes: A field experiment in a slowly cooled metamorphic terrane , 1987 .

[8]  A. Baksi,et al.  40Ar–39Ar incremental heating study of mineral separates from the early Archean east Indian craton: implications for the thermal history of a section of the Singbhum Granite batholithic complex , 1987 .

[9]  G. Cooke,et al.  Modal analyses of granitoids by quantitative X-ray diffraction , 1987 .

[10]  E. Ferrow Mössbauer effect and X-ray diffraction studies of synthetic iron bearing trioctahedral micas , 1987 .

[11]  R. Wirth,et al.  Interpretation of 40Ar/39Ar spectra of biotites: evidence from hydrothermal degassing experiments and TEM studies , 1987 .

[12]  Margarita López Martínez,et al.  the two-faced mica , 1986 .

[13]  D. Jenkins,et al.  Phase equilibria and crystallochemical properties of Mg-chlorite , 1986 .

[14]  K. Foland,et al.  The Mont Saint Hilaire plutonic complex: occurrence of excess 40Ar and short intrusion history , 1986 .

[15]  T. Onstott,et al.  Application of 36/40Ar Versus 39Ar/40Ar Correlation diagrams to the 40Ar/39Ar spectra of phlogopites from Southern African kimberlites , 1986 .

[16]  F. Martineau,et al.  Geochronology of the Tananao schist complex, Taiwan, and its regional tectonic significance , 1986 .

[17]  M. Cho,et al.  A kinetic study of clinochlore and its high temperature equivalent forsterite-cordierite-spinel at 2 kbar water pressure , 1986 .

[18]  J. C. Hess,et al.  Kinetics of Ar isotopes during neutron irradiation: 39Ar loss from minerals as a source of error in 40Ar/39Ar dating , 1986 .

[19]  I. Duncan,et al.  Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects , 1985 .

[20]  N. Grant,et al.  dating of glauconites: Measured 39Ar recoil loss from well-crystallized specimens , 1984 .

[21]  J. Sanz,et al.  On dehydroxylation mechanisms of a biotite in vacuo and in oxygen , 1983 .

[22]  A. Nagy,et al.  Characteristics of a stable auroral red arc event , 1982 .

[23]  C. Lo,et al.  Mineral chemistry in some gneissic bodies, the Hoping- Chipan area, Hualien, Eastern Taiwan. , 1981 .

[24]  D. York,et al.  Geothermometry from 40Ar39Ar dating experiments , 1981 .

[25]  D. Moore,et al.  Geology and Petrology of Some Polymetamorphosed Amphibolites and Associated Rocks in Northeastern Taiwan , 1981 .

[26]  G. B. Dalrymple,et al.  Irradiation of samples for 40Ar/39Ar dating using the Geological Survey TRIGA reactor , 1981 .

[27]  R. Cliff,et al.  The evolution of excess argon in alpine biotites — A40Ar-39Ar analysis , 1980 .

[28]  K. Foland Limited mobility of argon in a metamorphic terrain , 1979 .

[29]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[30]  R. D. Dallmeyer 40Ar39Ar ages of biotite and hornblende from a progressively remetamorphosed basement terrane: their bearing on interpretation of release spectra , 1975 .

[31]  G. Hanson,et al.  40Ar/39Ar spectrum ages for biotite, hornblende and muscovite in a contact metamorphic zone , 1975 .

[32]  G. Berger 40Ar/39Ar step heating of thermally overprinted biotite, hornblende and potassium feldspar from Eldora, Colorado , 1975 .

[33]  S. Hart,et al.  Realistic use of two‐error regression treatments as applied to rubidium‐strontium data , 1972 .

[34]  P. Rouxhet,et al.  Thermal decomposition of amosite, crocidolite, and biotite , 1972, Mineralogical Magazine.

[35]  R. Wilkins,et al.  Dehydroxylation and rehydroxylation, oxidation and reduction of micas , 1969 .

[36]  G. Turner Thermal Histories of Meteorites by the 39Ar-40Ar Method , 1969 .

[37]  Derek York,et al.  Least squares fitting of a straight line with correlated errors , 1968 .

[38]  S. Brandt,et al.  Dehydration and diffusion of radiogenic argon in micas , 1967 .

[39]  顔 滄波 The gneisses of Taiwan , 1954 .

[40]  Joe L. White,et al.  POTASSIUM FIXATION IN CLAY MINERALS AS RELATED TO CRYSTAL STRUCTURE , 1951 .

[41]  Samim Ali,et al.  X‐ray study of thermal transformations in some magnesian chlorite minerals , 1950 .