Submerged finned heat exchanger latent heat storage design and its experimental verification

Thermal energy storage (TES) has shown potential in improving the overall performance in energy systems, through shifting of thermal load demand, and through matching of uneven energy availability in time and in space. Latent heat TESs demonstrate advantages over sensible heat TESs for their high storage density and small temperature swing; however, lack of accurate knowledge in novel material properties and lack in a holistic design protocol often lead to difficulties in reaching technically viable storage design. With the aim of proposing a sound latent heat based TES design-to-validation protocol, this paper covers material property characterization through Temperature-history (T-history) method, heat exchanger design through heat transfer modeling, and model validation through experimental verification. A model for submerged cylindrically finned heat exchanger latent heat storage unit with phase change material was built. The results show that performance of gelled salt-hydrate based TES can be assessed with a pure conduction based model. This material property characterization-to-model verification approach may serve as a standard in providing accurate storage design for performance evaluation.

[1]  G. Ziskind,et al.  Numerical investigation of a PCM-based heat sink with internal fins , 2005 .

[2]  K. Ismail,et al.  Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder , 2001 .

[3]  L. Cabeza,et al.  Review of the T-history method to determine thermophysical properties of phase change materials (PCM) , 2013 .

[4]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[5]  Viktoria Martin,et al.  Thermal energy storage for sustainable future : impact of power enhancement on storage performance , 2010 .

[6]  Mohammed M. Farid,et al.  A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials , 2021, Thermal Energy Storage with Phase Change Materials.

[7]  Joseph Virgone,et al.  Optimization of a Phase Change Material Wallboard for Building Use , 2008 .

[8]  Piia Lamberg,et al.  Approximate analytical model for two-phase solidification problem in a finned phase-change material storage , 2004 .

[9]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[10]  Zhang Yinping,et al.  A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials , 1999 .

[11]  M. A. Acar,et al.  Ice formation around a finned-tube heat exchanger for cold thermal energy storage , 2006 .

[12]  X. Py,et al.  Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material , 2001 .

[13]  S. C. Solanki,et al.  Heat transfer characteristics of thermal energy storage system using PCM capsules: A review , 2008 .

[14]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[15]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[16]  L. Cabeza,et al.  Determination of enthalpy?temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties , 2003 .

[17]  S. Argyropoulos,et al.  Mathematical modelling of solidification and melting: a review , 1996 .

[18]  Arda Cetin,et al.  Numerical simulation of solidification kinetics in A356/SiCp composites for assessment of as-cast particle distribution , 2009 .

[19]  Luisa F. Cabeza,et al.  Improvement of a thermal energy storage using plates with paraffin–graphite composite , 2005 .

[20]  Yvan Dutil,et al.  A review on phase-change materials: Mathematical modeling and simulations , 2011 .

[21]  Jinyue Yan,et al.  Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage , 2009 .

[22]  Viktoria Martin,et al.  Multistage latent heat cold thermal energy storage design analysis , 2013 .

[23]  L. Cabeza,et al.  Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems , 2009 .

[24]  Jinyue Yan,et al.  Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride , 2009 .

[25]  A. W. Date A strong enthalpy formulation for the Stefan problem , 1991 .

[26]  Fredrik Setterwall,et al.  Phase transition temperature ranges and storage density of paraffin wax phase change materials , 2004 .

[27]  J. Selman,et al.  Thermal conductivity enhancement of phase change materials using a graphite matrix , 2006 .

[28]  H. Hong,et al.  Accuracy improvement of T-history method for measuring heat of fusion of various materials , 2004 .

[29]  M. Lacroix Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube , 1993 .

[30]  Wujun Zhang,et al.  Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system , 2008 .

[31]  S. J. Kline,et al.  Describing Uncertainties in Single-Sample Experiments , 1953 .

[32]  John Rekstad,et al.  Supercooling salt hydrates: Stored enthalpy as a function of temperature , 2006 .

[33]  A. Oliva,et al.  Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction , 1998 .

[34]  Philippe Marty,et al.  Experimental and numerical study of annular PCM storage in the presence of natural convection , 2013 .

[35]  Zhenyu Liu,et al.  Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage , 2013 .

[36]  V. V. Tyagi,et al.  PCM thermal storage in buildings: A state of art , 2007 .

[37]  Jose M. Marin,et al.  Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials , 2006 .

[38]  J. Stefan,et al.  Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere , 1891 .

[39]  Anil Date,et al.  A novel enthalpy formulation for multidimensional solidification and melting of a pure substance , 1994 .