PHASE-REFERENCED INTERFEROMETRY AND NARROW-ANGLE ASTROMETRY WITH SUSI

The Sydney University Stellar Interferometer (SUSI) now incorporates a new beam combiner, called the Microarc-second University of Sydney Companion Astrometry instrument (MUSCA), for the purpose of high precision differential astrometry of bright binary stars. Operating in the visible wavelength regime where photon-counting and post-processing fringe tracking is possible, MUSCA will be used in tandem with SUSI's primary beam combiner, Precision Astronomical Visible Observations (PAVO), to record high spatial resolution fringes and thereby measure the separation of fringe packets of binary stars. In its current phase of development, the dual beam combiner configuration has successfully demonstrated for the first time a dual-star phase-referencing operation in visible wavelengths. This paper describes the beam combiner optics and hardware, the network of metrology systems employed to measure every non-common path between the two beam combiners and also reports on a recent narrow-angle astrometric observation of δ Orionis A (HR 1852) as the project enters its on-sky testing phase.

[1]  B. Mason,et al.  THE HIGH ANGULAR RESOLUTION MULTIPLICITY OF MASSIVE STARS , 2008, 0811.0492.

[2]  W. Hartkopf,et al.  A CATALOG OF VISUAL DOUBLE AND MULTIPLE STARS WITH ECLIPSING COMPONENTS , 2009, 0907.5172.

[3]  A. Vigan,et al.  The International Deep Planet Survey - I. The frequency of wide-orbit massive planets around A-stars , 2012, 1206.4048.

[4]  Taking the twinkle out of the stars: an adaptive wavefront tilt correction servo and preliminary seeing study for SUSI. , 1994 .

[5]  G. Anglada-Escudé,et al.  STRONG CONSTRAINTS TO THE PUTATIVE PLANET CANDIDATE AROUND VB 10 USING DOPPLER SPECTROSCOPY , 2010, 1001.0043.

[6]  S. Desidera,et al.  The frequency of planets in multiple systems , 2007, astro-ph/0703754.

[7]  J. M. Apell'aniz High-resolution imaging of Galactic massive stars with AstraLux. I. 138 fields with δ > - 25° , 2010, 1004.5045.

[8]  John Davis,et al.  Sydney University Stellar Interferometer , 1998, Astronomical Telescopes and Instrumentation.

[9]  P. Tuthill,et al.  Long-baseline interferometric multiplicity survey of the Sco-Cen OB association , 2013, 1309.3811.

[10]  R. A. Minard,et al.  The Sydney University Stellar Interferometer — I. The instrument , 1999 .

[11]  A. Michelson,et al.  Measurement of the Diameter of Alpha-Orionis by the Interferometer. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Shao,et al.  THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. II. UPDATED BINARY STAR ORBITS AND A LONG PERIOD ECLIPSING BINARY , 2010, 1010.4043.

[13]  N. Schuhler,et al.  Frequency-comb-referenced two-wavelength source for absolute distance measurement. , 2006, Optics letters.

[14]  H. M. Dyck,et al.  Imaging a Binary Star With a Two-Telescope Michelson Stellar Interferometer , 1995 .

[15]  Caussin Le Livre De La Grande Table Hakemite , 1804 .

[16]  I. Howarth,et al.  SPECTROSCOPIC BINARY ORBITS FROM ULTRAVIOLET RADIAL-VELOCITIES .3. DELTA-ORIONIS , 1987 .

[17]  D. Queloz,et al.  Extrasolar planets and brown dwarfs around A-F type stars. I. Performances of radial velocity measurements, first analyses of variations , 2005 .

[18]  Matthew Holman,et al.  Long-Term Stability of Planets in Binary Systems , 1996 .

[19]  M. Mayor,et al.  Planets around evolved intermediate-mass stars - I. Two substellar companions in the open clusters NGC 2423 and NGC 4349 , 2007, 0706.2174.

[20]  P. Tuthill,et al.  Simulating a dual beam combiner at SUSI for narrow-angle astrometry , 2013, 1302.7139.

[21]  R. Dvorak Critical orbits in the elliptic restricted three-body problem , 1986 .

[22]  et al,et al.  The Palomar Testbed Interferometer , 1999 .

[23]  Peter G. Tuthill,et al.  Sensitive visible interferometry with PAVO , 2008, Astronomical Telescopes + Instrumentation.

[24]  Stuart B. Shaklan,et al.  AN ULTRACOOL STAR’S CANDIDATE PLANET , 2009, 0906.0544.

[25]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[26]  N. Kanas Star Maps: History, Artistry, and Cartography , 2007 .

[27]  Andrew Cumming,et al.  The Lick Planet Search: Detectability and Mass Thresholds , 1999 .

[28]  Andreas Glindemann,et al.  Principles of Stellar Interferometry , 2011 .

[29]  J. Gordon Robertson,et al.  Science and technology progress at the Sydney University Stellar Interferometer , 2012, Other Conferences.

[30]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .

[31]  Frantz Martinache,et al.  THE ROLE OF MULTIPLICITY IN DISK EVOLUTION AND PLANET FORMATION , 2011, 1109.4141.

[32]  Benjamin F. Lane,et al.  Phase-referenced Stellar Interferometry at the Palomar Testbed Interferometer , 2003 .

[33]  R. Dändliker,et al.  Two-wavelength laser interferometry using superheterodyne detection. , 1988, Optics letters.

[34]  Gordon A. H. Walker,et al.  A search for substellar companions to solar-type stars , 1988 .

[35]  Kenneth I. Kellermann,et al.  Galactic and Extra‐Galactic Radio Astronomy , 1974 .

[36]  W J Tango Dispersion in stellar interferometry. , 1990, Applied optics.

[37]  F. Zernike The concept of degree of coherence and its application to optical problems , 1938 .

[38]  S. Ragland,et al.  ASTRA: astrometry and phase-referencing astronomy on the Keck interferometer , 2010, Astronomical Telescopes + Instrumentation.

[39]  J. Scargle Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data , 1989 .

[40]  Jason T. Wright,et al.  Retired A Stars and Their Companions: Exoplanets Orbiting Three Intermediate-Mass Subgiants , 2007, 0704.2455.

[41]  Peter R. Lawson Group delay tracking with the Sydney University stellar interferometer. , 1994 .

[42]  Ellyn K. Baines,et al.  FIRST RESULTS FROM THE CHARA ARRAY. I. AN INTERFEROMETRIC AND SPECTROSCOPIC STUDY OF THE FAST ROTATORLEONIS (REGULUS) H. A. McAlister, T. A. ten Brummelaar, D. R. Gies, 1 W. Huang, 1 W. G. Bagnuolo, Jr., , 2005 .

[43]  M. G. Lattanzi,et al.  Double-blind test program for astrometric planet detection with Gaia , 2008, 0802.0515.

[44]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[45]  W. J. Tango,et al.  The Sydney University Stellar Interferometer: A Major Upgrade to Spectral Coverage and Performance , 2007, Publications of the Astronomical Society of Australia.

[46]  Reinhard Genzel,et al.  What is limiting near-infrared astrometry in the Galactic Centre? , 2009, 0909.2592.

[47]  P. Kervella,et al.  The nearby eclipsing stellar system δ Velorum - IV. Differential astrometry with VLT/NACO at the 100 microarcsecond level , 2013, 1302.5807.

[48]  G C Valley Long- and short-term Strehl ratios for turbulence with finite inner and outer scales. , 1979, Applied optics.

[49]  R. Lane,et al.  Simulation of a Kolmogorov phase screen , 1992 .

[50]  W. Tango,et al.  A wavefront tilt correction servo for the Sydney University Stellar Interferometer , 1994 .

[51]  Stuart Bruce. Shaklan Multiple Beam Correlation Using Single-Mode Fiber Optics with Application to Interferometric Imaging , 1989 .

[52]  Theo ten Brummelaar,et al.  The SUSI instrument: new science and technology , 2008, Astronomical Telescopes + Instrumentation.

[53]  K. E. Erickson Investigation of the Invariance of Atmospheric Dispersion with a Long-Path Refractometer* , 1962 .

[54]  A. Sozzetti Astrometry and Exoplanets: the Gaia Era, and Beyond , 2010, 1012.3346.

[55]  Andrei Tokovinin,et al.  SPECKLE INTERFEROMETRY AT THE BLANCO AND SOAR TELESCOPES IN 2008 AND 2009 , 2009, 0911.5718.

[56]  F. Grundahl,et al.  Searching for solar-like oscillations in the δ Scuti star ρ Puppis , 2013, 1307.7589.

[57]  J. Gordon Robertson,et al.  Instrumental developments for the Sydney University Stellar Interferometer , 2010, Astronomical Telescopes + Instrumentation.

[58]  Alain Chelli,et al.  Optimizing Doppler estimates for extrasolar planet detection. I. A specific algorithm for shifted spectra , 2000 .

[59]  P. Tuthill,et al.  Low-cost scheme for high-precision dual-wavelength laser metrology. , 2013, Applied optics.

[60]  Markus Wittkowski,et al.  Coherent integration using phase bootstrapping , 2003, SPIE Astronomical Telescopes + Instrumentation.

[61]  E. Seneta,et al.  A new determination of the orbit and masses of the Be binary system δ Scorpii , 2008, 0811.4004.

[62]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[63]  Amsterdam,et al.  The primordial binary population. II.. Recovering the binary population for intermediate mass stars in Scorpius OB2 , 2007, 0707.2746.

[64]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[65]  W. J. Tango,et al.  Orbital parameters, masses and distance to β Centauri determined with the Sydney University Stellar Interferometer and high‐resolution spectroscopy , 2005 .

[66]  Andrei Tokovinin,et al.  SPECKLE INTERFEROMETRY AT SOAR IN 2010 AND 2011: MEASURES, ORBITS, AND RECTILINEAR FITS , 2012 .

[67]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[68]  John B. Davis,et al.  The Sydney University Stellar Interferometer — II. Commissioning observations and results , 1999 .

[69]  Michael J. Ireland,et al.  A new embedded control system for SUSI , 2010, Astronomical Telescopes + Instrumentation.

[70]  Andreas Glindemann,et al.  The VLT Interferometer: a unique instrument for high-resolution astronomy , 2000, Astronomical Telescopes and Instrumentation.

[71]  John D. Monnier,et al.  Phases in interferometry , 2007 .

[72]  J. Goodman,et al.  Limitations of fringe-parameter estimation at low light levels* , 1973 .

[73]  Hugo Levato,et al.  Stellar multiplicity in the Scorpius-Centaurus association , 1987 .

[74]  D. A. King Ibn Yūnus' very useful tables for reckoning time by the sun , 1973 .

[75]  Françoise Delplancke,et al.  The PRIMA facility phase-referenced imaging and micro-arcsecond astrometry , 2008 .

[76]  Benjamin F. Lane,et al.  Least-squares estimation and group delay in astrometric interferometers , 2000, Astronomical Telescopes and Instrumentation.

[77]  Michael C. Liu,et al.  RETIRED A STARS AND THEIR COMPANIONS. III. COMPARING THE MASS–PERIOD DISTRIBUTIONS OF PLANETS AROUND A-TYPE STARS AND SUN-LIKE STARS , 2009, 0912.0518.

[78]  B. F. Lane,et al.  Differential Astrometry of Subarcsecond Scale Binaries at the Palomar Testbed Interferometer , 2004 .

[79]  J. Armstrong,et al.  The Navy Prototype Optical Interferometer , 1998 .

[80]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[81]  Michael James Ireland Optical Interferometry and Mira Variable Stars , 2005 .

[82]  John Davis,et al.  Atmospheric path variations for baselines up to 80m measured with the Sydney University Stellar Interferometer , 1995 .

[83]  Accepted for publication in the Astrophysical Journal A New Look at the Binary Characteristics of Massive Stars , 2007 .

[84]  Benjamin F. Lane,et al.  THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. I. MEASUREMENTS AND DESCRIPTION , 2010 .

[85]  Julien Woillez,et al.  WIDE-ANGLE, NARROW-ANGLE, AND IMAGING BASELINES OF OPTICAL LONG-BASELINE INTERFEROMETERS , 2013 .

[86]  Michael Shao,et al.  High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT) , 2011, 1107.3643.

[87]  L. Casperson,et al.  Principles of lasers , 1983, IEEE Journal of Quantum Electronics.

[88]  P. Harmanec,et al.  Physical elements of the eclipsing binary δ Orionis , 2010 .

[89]  B. Edĺen The Refractive Index of Air , 1966 .

[90]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[91]  David Mozurkewich,et al.  Precision narrow-angle astrometry of binary stars with the Navy Prototype Optical Interferometer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[92]  S. Grossmann The Spectrum of Turbulence , 2003 .

[93]  M. M. Colavita,et al.  Potential of long-baseline infrared interferometry for narrow-angle astrometry , 1992 .

[94]  C. G. Tinney,et al.  Observed Properties of Exoplanets : Masses, Orbits, and Metallicities(Origins : From Early Universe to Extrasolar Planets) , 2005 .

[95]  J. D. Shelton,et al.  Transverse spectral filtering and Mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism , 1993 .

[96]  C. Aerts,et al.  Evidence for binarity and multiperiodicity in the Cephei star Crucis , 1998 .

[97]  John Davis,et al.  MEASUREMENT OF THE ATMOSPHERIC COHERENCE TIME , 1996 .

[98]  Michael J. Ireland,et al.  Imaging rapid rotators with the PAVO beam combiner at CHARA , 2012, Other Conferences.

[99]  M. Wright,et al.  Interferometry and Aperture Synthesis , 1974 .

[100]  A. Tokovinin SPECKLE INTERFEROMETRY AND ORBITS OF “FAST” VISUAL BINARIES , 2012, 1206.1882.

[101]  Benjamin L. McGlamery,et al.  Computer Simulation Studies Of Compensation Of Turbulence Degraded Images , 1976, Other Conferences.

[102]  R. H. Brown,et al.  The Angular Diameters of 32 Stars , 1974 .

[103]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[104]  David L. Fried,et al.  Statistics of a Geometric Representation of Wavefront Distortion: Errata , 1965 .

[105]  Markus Janson,et al.  HIGH-CONTRAST IMAGING SEARCH FOR PLANETS AND BROWN DWARFS AROUND THE MOST MASSIVE STARS IN THE SOLAR NEIGHBORHOOD , 2011, 1105.2577.

[106]  A. Sevin,et al.  GRAVITY: a four-telescope beam combiner instrument for the VLTI , 2010, Astronomical Telescopes + Instrumentation.

[107]  J. Monnier Optical interferometry in astronomy , 2003, astro-ph/0307036.