A micro-crack initiation life simulation method by improving the Tanaka-Mura's model of slip behavior

[1]  X. Wu On Tanaka‐Mura's fatigue crack nucleation model and validation , 2018 .

[2]  M. Enoki,et al.  Fatigue Crack Initiation Simulation in Pure Iron Polycrystalline Aggregate , 2016 .

[3]  Xianghua Liu,et al.  CRYSTAL PLASTICITY FINITE ELEMENT SIMULA- TION OF SLIP AND DEFORMATION IN ULTRA- THIN COPPER STRIP ROLLING , 2016 .

[4]  Xiaolei Wu,et al.  An energy-equilibrium model for complex stress effect on fatigue crack initiation , 2014 .

[5]  H. Mughrabi Cyclic slip irreversibility and fatigue life: A microstructure-based analysis , 2013 .

[6]  Yong-Hak Huh,et al.  An Investigation of Fatigue Characteristics of Copper Film , 2011 .

[7]  S. Glodež,et al.  Numerical modelling of fatigue crack initiation and growth of martensitic steels , 2010 .

[8]  Srečko Glodež,et al.  Extension of the Tanaka–Mura model for fatigue crack initiation in thermally cut martensitic steels , 2010 .

[9]  H. Mughrabi,et al.  Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage , 2009 .

[10]  X. Feaugas,et al.  Some comments about fatigue crack initiation in relation to cyclic slip irreversibility , 2008 .

[11]  Angelika Brückner-Foit,et al.  Simplified three-dimensional model for fatigue crack initiation , 2007 .

[12]  A. Wilkinson,et al.  Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal , 2007 .

[13]  Angelika Brückner-Foit,et al.  Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading , 2006 .

[14]  W. W. Milligan,et al.  A model for slip irreversibility, and its effect on the fatigue crack propagation threshold in a nickel-base superalloy , 2005 .

[15]  Mughrabi On the life‐controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime , 1999 .

[16]  T. A. Cruse,et al.  RELIABILITY-BASED MICROMECHANICAL SMALL CRACK GROWTH MODEL , 1999 .

[17]  J. Lian,et al.  A modified Hall-Petch relationship for nanocrystalline materials , 1993 .

[18]  John L. Bassani,et al.  Latent hardening in single crystals. II. Analytical characterization and predictions , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[19]  C. Laird,et al.  Latent hardening in single crystals - I. Theory and experiments , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[20]  T. Mura,et al.  A Theory of Fatigue Crack Initiation in Solids , 1990 .

[21]  Toshio Mura,et al.  A Dislocation Model for Fatigue Crack Initiation , 1981 .

[22]  P. Kettunen Fatigue hardening of copper single crystals at low stress amplitudes , 1967 .

[23]  R. Hill Generalized constitutive relations for incremental deformation of metal crystals by multislip , 1966 .

[24]  P. Milella Strain-Based Fatigue Analysis Low Cycle Fatigue , 2013 .

[25]  Zhang,et al.  Fatigue-crack-initiation numerical modelling of a Ni-base powder metallurgy alloy , 2012 .

[26]  Darrell F. Socie,et al.  Crack nucleation and growth modeling in biaxial fatigue , 1988 .

[27]  J. Morrow Cyclic Plastic Strain Energy and Fatigue of Metals , 1965 .

[28]  H. Udin Grain Boundary Effect in Surface Tension Measurement , 1951 .