TANGENT-FILLING PLANE CURVES OVER FINITE FIELDS

<jats:p>We study plane curves over finite fields whose tangent lines at smooth <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972723000382_inline1.png" /> <jats:tex-math> $\mathbb {F}_q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-points together cover all the points of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0004972723000382_inline2.png" /> <jats:tex-math> $\mathbb {P}^2(\mathbb {F}_q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.</jats:p>

[1]  Chi Hoi Yip,et al.  Proportion of blocking curves in a pencil , 2023, 2301.06019.

[2]  Chi Hoi Yip,et al.  Most plane curves over finite fields are not blocking , 2022, 2211.08523.

[3]  D. Ghioca,et al.  SMOOTHNESS IN PENCILS OF HYPERSURFACES OVER FINITE FIELDS , 2022, Bulletin of the Australian Mathematical Society.

[4]  Peter Beelen,et al.  Classification of all Galois subcovers of the Skabelund maximal curves , 2021, Journal of Number Theory.

[5]  M. Homma Fragments of plane filling curves of degree q + 2 over the finite field of q elements, and of affine-plane filling curves of degree q + 1 , 2019, Linear Algebra and its Applications.

[6]  Gregory Duran Cunha Curves containing all points of a finite projective Galois plane , 2017, 1805.07345.

[7]  Peter Beelen,et al.  A new family of maximal curves , 2017, J. Lond. Math. Soc..

[8]  M. Homma,et al.  Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: Supplements to a work of Tallini , 2009, 0903.1918.

[9]  S. G. Barwick,et al.  Unitals in Projective Planes , 2008 .

[10]  Gábor Korchmáros,et al.  A new family of maximal curves over a finite field , 2007, 0711.0445.

[11]  A. Cafure,et al.  Improved explicit estimates on the number of solutions of equations over a finite field , 2004, Finite Fields Their Appl..

[12]  G. Korchmáros,et al.  On Plane Maximal Curves , 1998, Compositio Mathematica.

[13]  M. Planitz,et al.  Analysis, algebra, and computers in mathematical research , 1995 .

[14]  Aart Blokhuis,et al.  On the size of a blocking set inPG(2,p) , 1994, Comb..

[15]  T. Willmore Algebraic Geometry , 1973, Nature.

[16]  A. Wallace Tangency and Duality Over Arbitrary Fields , 1956 .

[17]  Chi Hoi Yip,et al.  BLOCKING SETS ARISING FROM PLANE CURVES OVER FINITE FIELDS , 2022 .

[18]  Henning Stichtenoth,et al.  A generalization of the Giulietti-Korchmaros maximal curve , 2010 .

[19]  Yves Aubry,et al.  A Weil theorem for singular curves , 1996 .

[20]  R. Piene Projective algebraic geometry in positive characteristic , 1993 .

[21]  H. Kaji On the Gauss maps of space curves in characteristic p , 1989 .

[22]  R. Pardini Some remarks on plane curves over fields of finite characteristic , 1986 .