Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks
暂无分享,去创建一个
Rakesh Agrawal | R. Agrawal | Charles J. Hages | Nathaniel J. Carter | Steven M. McLeod | C. Hages | Steven M. Mcleod
[1] Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films. , 2013, ACS applied materials & interfaces.
[2] Rakesh Agrawal,et al. Cu2ZnSn(S,Se)4 solar cells from inks of heterogeneous Cu–Zn–Sn–S nanocrystals , 2014 .
[3] Uwe Rau,et al. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors , 2001 .
[4] Rakesh Agrawal,et al. Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.
[5] H. Hillhouse,et al. Ink formulation and low‐temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks , 2013 .
[6] Steven S. Hegedus,et al. Thin‐film solar cells: device measurements and analysis , 2004 .
[7] Rakesh Agrawal,et al. Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication , 2011 .
[8] D. Hariskos,et al. High-efficiency Cu(In,Ga)Se2 cells and modules , 2013 .
[9] Rakesh Agrawal,et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.
[10] Rommel Noufi,et al. Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In,Ga)2Se3 precursors , 1996 .
[11] M. Bodegård,et al. Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance , 2003 .
[12] Rakesh Agrawal,et al. 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks , 2015 .
[13] L. Kranz,et al. Flexible Cu(In,Ga)Se2 solar cells with reduced absorber thickness , 2015 .
[14] H. Schock,et al. Co-evaporation of Cu(In, Ga)Se2 at low temperatures: An In-Situ x-ray growth analysis , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).
[15] Jürgen H. Werner,et al. Radiative efficiency limits of solar cells with lateral band-gap fluctuations , 2004 .
[16] J. Sites,et al. Band-gap grading in Cu(In,Ga)Se2 solar cells , 2005 .
[17] Tayfun Gokmen,et al. Solution‐processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell , 2013 .
[18] Rommel Noufi,et al. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .
[19] H. Schock,et al. Study of the effect of gallium grading in Cu(In,Ga)Se2 , 2000 .
[20] H. Queisser,et al. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .
[21] Tayfun Gokmen,et al. Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .
[22] D. Hariskos,et al. New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .
[23] Jürgen H. Werner,et al. Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2 , 2005 .
[24] Wei Wang,et al. 8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks. , 2012, Physical chemistry chemical physics : PCCP.
[25] W. Warta,et al. Solar cell efficiency tables (version 43) , 2014 .
[26] D. Abou‐Ras,et al. Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses , 2015 .
[27] J. Werner,et al. High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells , 2007 .
[28] Dongwook Lee,et al. Superstrate CuInS2 photovoltaics with enhanced performance using a CdS/ZnO nanorod array. , 2012, ACS applied materials & interfaces.
[29] T. Unold,et al. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. , 2013, Physical chemistry chemical physics : PCCP.
[30] H. Hillhouse,et al. Enhancing the performance of CZTSSe solar cells with Ge alloying , 2012 .
[31] R. Scheer. Activation energy of heterojunction diode currents in the limit of interface recombination , 2009 .