Design of the interlock and protection system for the SPIDER experiment

Abstract Unprecedented levels of beam energy and power are required for ITER Neutral Beam Heating systems. SPIDER experiment is an experimental device aimed to test and optimize a full size beam source satisfying ITER requirements. SPIDER experiment operation involves high power, voltage, temperature, and gas pressure. All these critical conditions are present simultaneously, so that any failure if not properly detected and managed is likely to cause severe damage. The Interlock and Protection System is a high-reliability system devoted to the investment protection of SPIDER. Its main purpose is to manage abnormal events occurring in one or more plants in order to minimize adverse consequences. The Interlock System also manages the SPIDER Operating Modes, defining the set and status of the Plants used in the various possible experimental configurations. In addition, the Interlock and Protection System takes care of particular events occurring during normal SPIDER operation, i.e. electrical arcs between accelerator grids, named breakdowns. Their treatment is committed to the Interlock and Protection System, as they need to be managed timely and with absolute reliability like actual faults. To perform the required functions, the Interlock and Protection System is interfaced with most SPIDER plants and with the SPIDER Control and Data Acquisition System. The paper describes the rationale of the protection functions, their implementation in the design and the technical specifications of the system.