Parallel solution to ill‐conditioned FE geomechanical problems

SUMMARY Parallel computers are potentially very attractive for the implementation of large size geomechanical models. One of the main difficulties of parallelization, however, relies on the efficient solution of the frequently ill-conditioned algebraic system arising from the linearization of the discretized equilibrium equations. While very efficient preconditioners have been developed for sequential computers, not much work has been devoted to parallel solution algorithms in geomechanics. The present study investigates the state-of-the-art performance of the factorized sparse approximate inverse (FSAI) as a preconditioner for the iterative solution of ill-conditioned geomechanical problems. Pre-and post-filtration strategies are experimented with to increase the FSAI efficiency. Numerical results show that FSAI exhibits a promising potential for parallel geomechanical models mainly because of its almost ideal scalability. With the present formulation, however, at least 4 or 8 processors are required in the selected test cases to outperform one of the most efficient sequential algorithms available for FE geomechanics, i.e. the multilevel incomplete factorization (MIF). Further research is needed to improve the FSAI efficiency with a more effective selection of the preconditioner non-zero pattern. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[2]  O. C. Zienkiewicz,et al.  Generalized plasticity and the modelling of soil behaviour , 1990 .

[3]  Yousef Saad,et al.  ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..

[4]  Jun Zhang,et al.  BILUM: Block Versions of Multielimination and Multilevel ILU Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[5]  Giuseppe Gambolati,et al.  Ill-conditioning of finite element poroelasticity equations , 2001 .

[6]  Giuseppe Gambolati,et al.  The role of preconditioning in the solution to FE coupled consolidation equations by Krylov subspace methods , 2009 .

[7]  Edmond Chow,et al.  A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[8]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[9]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[10]  A. Yu. Yeremin,et al.  Factorized sparse approximate inverse preconditionings. IV: Simple approaches to rising efficiency , 1999 .

[11]  Zdene caron,et al.  Theoretically Supported Scalable FETI for Numerical Solution of Variational Inequalities , 2007 .

[12]  A. A. Nikishin,et al.  Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .

[13]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[14]  Carlo Janna,et al.  Multi‐level incomplete factorizations for the iterative solution of non‐linear finite element problems , 2009 .

[15]  G. Gambolati,et al.  Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields , 2010 .

[16]  Claudia Comi,et al.  A GENERALIZED VARIABLE FORMULATION FOR GRADIENT DEPENDENT SOFTENING PLASTICITY , 1996 .

[17]  Giuseppe Gambolati,et al.  Groundwater pumping and land subsidence in the Emilia‐Romagna coastland, Italy: Modeling the past occurrence and the future trend , 2006 .

[18]  Hongyuan Liu,et al.  Numerical Studies on Bit-Rock Fragmentation Mechanisms , 2008 .

[19]  Z. Dostál,et al.  Solution of contact problems by FETI domain decomposition with natural coarse space projections , 2000 .

[20]  J. Pacheco,et al.  Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Querétaro valley, México , 2006 .

[21]  Luca Bergamaschi,et al.  Parallel Acceleration of Krylov Solvers by Factorized Approximate Inverse Preconditioners , 2004, VECPAR.

[22]  Marco Vianello,et al.  A massively parallel exponential integrator for advection-diffusion models , 2009, J. Comput. Appl. Math..

[23]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[24]  Charles E. Augarde,et al.  Element‐based preconditioners for elasto‐plastic problems in geotechnical engineering , 2007 .

[25]  A. Yu. Yeremin,et al.  Factorized Sparse Approximate Inverse Preconditioning II: Solution of 3D FE Systems on Massively Parallel Computers , 1995, Int. J. High Speed Comput..

[26]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[27]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..

[28]  Carlo Janna,et al.  Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs , 2008 .

[29]  T. Huckle Approximate sparsity patterns for the inverse of a matrix and preconditioning , 1999 .

[30]  Carlo Janna,et al.  Mixed constraint preconditioning in computational contact mechanics , 2008 .

[31]  Luca Bergamaschi,et al.  Mixed Constraint Preconditioners for the iterative solution of FE coupled consolidation equations , 2008, J. Comput. Phys..

[32]  Domenico Baù,et al.  Basin-scale compressibility of the northern Adriatic by the radioactive marker technique , 2002 .

[33]  George Z. Voyiadjis,et al.  Modelling strain localization in granular materials using micropolar theory: numerical implementation and verification , 2006 .

[34]  Thomas A. Manteuffel,et al.  First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .