Tripartite Entanglement: Foundations and Applications

We review some current ideas of tripartite entanglement. In particular, we consider the case representing the next level of complexity beyond the simplest (though far from trivial) one, namely the bipartite case. This kind of entanglement plays an essential role in understanding the foundations of quantum mechanics. It also allows for implementing several applications in the fields of quantum information processing and quantum computing. In this paper, we review the fundamental aspects of tripartite entanglement focusing on Greenberger–Horne–Zeilinger and W states for discrete variables. We discuss the possibility of using it as a resource to execute quantum protocols and present some examples in detail.

[1]  Optimal distillation of a greenberger-horne-zeilinger state , 2000, Physical review letters.

[2]  Gustavo Rigolin,et al.  Probabilistic quantum teleportation in the presence of noise , 2016, 1604.04644.

[3]  Rameez-ul-Islam,et al.  Remote preparation of atomic and field cluster states from a pair of tri-partite GHZ states , 2010 .

[4]  Joy Christian Potentiality, Entanglement and Passion-at-a-Distance , 1999 .

[5]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[6]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[7]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[8]  Shangqing Gong,et al.  Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection , 2005 .

[9]  Debasis Sarkar,et al.  Revealing hidden genuine tripartite nonlocality , 2015, 1512.08138.

[10]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[11]  Marek Żukowski,et al.  Quest for Ghz States , 1998 .

[12]  Prakash Panangaden,et al.  The computational power of the W And GHZ States , 2006, Quantum Inf. Comput..

[13]  S. Wehner,et al.  Anonymous transmission in a noisy quantum network using the W state , 2018, Physical Review A.

[14]  Dong Wang,et al.  Generalized Remote Preparation of Arbitrary m-qubit Entangled States via Genuine Entanglements , 2015, Entropy.

[15]  Jianxing Fang,et al.  Probabilistic teleportation of a three-particle state via three pairs of entangled particles , 2003 .

[16]  Adan Cabello Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states , 2002 .

[17]  Xin-Wen Wang,et al.  One-step distillation of local-unitary-equivalent GHZ-type states , 2018, Quantum Inf. Process..

[18]  Tarrach,et al.  Generalized schmidt decomposition and classification of three-quantum-Bit states , 2000, Physical Review Letters.

[19]  Liu Jin-Ming,et al.  Quantum Teleportation of a Three-Particle Entangled State , 2002 .

[20]  S. Fei,et al.  Identification of three-qubit entanglement , 2013, 1301.4317.

[21]  Ujjwal Sen,et al.  Quantum Advantage in Communication Networks , 2011 .

[22]  Minh C. Tran,et al.  Genuine Multipartite Entanglement without Multipartite Correlations. , 2014, Physical review letters.

[23]  Marco Enríquez,et al.  Maximally Entangled Multipartite States: A Brief Survey , 2016 .

[24]  Pawel Caban,et al.  Noise resistance of activation of the violation of the Svetlichny inequality , 2019, Quantum Information Processing.

[25]  Akihisa Tomita,et al.  Reply to “Comment on: Teleportation of an unknown state by W state” , 2002 .

[26]  Dong-fen Li,et al.  Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state , 2019, Quantum Information Processing.

[27]  Christoph Simon,et al.  Three-photon energy–time entanglement , 2012, Nature Physics.

[28]  Lin Xiu,et al.  Probabilistic Teleportation of a Three-Particle GHZ State via Two Three-Particle Entangled W States , 2006 .

[29]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[30]  T. Jennewein,et al.  Experimental three-photon quantum nonlocality under strict locality conditions , 2013, Nature Photonics.

[31]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[32]  马雷,et al.  Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise , 2014 .

[33]  NMR GHZ , 1997, quant-ph/9709025.

[34]  Ming Li,et al.  Measure and detection of genuine multipartite entanglement for n-partite systems , 2017, The European Physical Journal Plus.

[35]  Zhi-wen Sang,et al.  Deterministic Joint Remote State Preparation of an Arbitrary Equatorial Three-Qubit State , 2019, International Journal of Theoretical Physics.

[36]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[37]  Márcio M. Cunha,et al.  Non-ideal teleportation of tripartite entanglement: Einstein–Podolsky–Rosen versus Greenberger–Horne–Zeilinger schemes , 2017, Quantum Inf. Process..

[38]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[39]  Xutao Yu,et al.  Multihop teleportation of two-qubit state via the composite GHZ–Bell channel , 2017 .

[40]  M. Luo,et al.  Deterministic remote preparation of an arbitrary W-class state with multiparty , 2010 .

[41]  Nicolas Macris,et al.  Efficient Quantum Algorithms for GHZ and W States, and Implementation on the IBM Quantum Computer , 2018, Advanced Quantum Technologies.

[42]  Zhihua Zhang,et al.  Quantum teleportation and superdense coding through the composite W-Bell channel , 2013, Quantum Inf. Process..

[43]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[44]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[45]  Min Jiang,et al.  A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource , 2018, Quantum Inf. Process..

[46]  Salman Khan,et al.  Entanglement of tripartite states with decoherence in non-inertial frames , 2012, 1302.3005.

[47]  Lu Hong Probabilistic Teleportation of the Three-Particle Entangled State via Entanglement Swapping , 2001 .

[48]  Ujjwal Sen,et al.  Deterministic quantum dense coding networks , 2017, Physics Letters A.

[49]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[50]  Sahin Kaya Ozdemir,et al.  Deterministic local doubling of W states , 2016, 1602.04166.

[51]  Xiaoqin Gao,et al.  Teleportation of entanglement using a three-particle entangled W state , 2017 .

[52]  L. C. Fai,et al.  Effects of static noise on the dynamics of quantum correlations for a system of three qubits , 2017 .

[53]  Dong Wang,et al.  Efficient and faithful remote preparation of arbitrary three- and four-particle $$W$$W-class entangled states , 2015, Quantum Inf. Process..

[54]  G. Guo,et al.  Controlled dense coding using the Greenberger-Horne-Zeilinger state , 2001 .

[55]  Jin‐Ming Liu,et al.  Quantum discord of a three-qubit W-class state in noisy environments , 2012 .

[56]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[57]  She-Xiang Jiang,et al.  Cyclic Hybrid Double-Channel Quantum Communication via Bell-State and GHZ-State in Noisy Environments , 2019, IEEE Access.

[58]  Kan Wang,et al.  Teleportation of two-qubit entangled state via non-maximally entangled GHZ state , 2018 .

[59]  Binayak S. Choudhury,et al.  A Teleportation Protocol For Transfer of Arbitrary GHZ-states Using Intermediate Nodes , 2018 .

[60]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[61]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[62]  A. V. Belinskii,et al.  Interference of light and Bell's theorem , 1993 .

[63]  N. Metwally Entanglement and quantum teleportation via decohered tripartite entangled states , 2014, 1401.0796.

[64]  Márcio M. Cunha,et al.  Using three-partite GHZ states for partial quantum error detection in entanglement-based protocols , 2018, Quantum Inf. Process..

[65]  Liu Ye,et al.  Scheme for implementing quantum dense coding using tripartite entanglement in cavity QED , 2005 .

[66]  N. Mermin Quantum mysteries revisited , 1990 .

[67]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[68]  Hidehiro Yonezawa,et al.  Experimental creation of a fully inseparable tripartite continuous-variable state. , 2003, Physical review letters.

[69]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[70]  Zhang-yin Wang Classical communication cost and probabilistic remote two-qubit state preparation via POVM and W-type states , 2012, Quantum Inf. Process..

[71]  Gang Xu,et al.  CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH W STATE , 2008 .

[72]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[73]  DaeKil Park,et al.  Greenberger-Horne-Zeilinger versus W states: Quantum teleportation through noisy channels , 2008 .

[74]  Guang-Can Guo,et al.  Probabilistic teleportation of two-particle entangled state , 2000 .

[75]  Chia-Wei Tsai,et al.  Teleportation of a Pure EPR State via GHZ-like State , 2010 .

[76]  N. An Joint remote state preparation via W and W-type states , 2010 .

[77]  V. N. Gorbachev,et al.  Quantum teleportation of an Einstein-Podolsy-Rosen pair using an entangled three-particle state , 2000 .

[78]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[79]  N. An,et al.  Quantum secure direct communication by using GHZ states and entanglement swapping , 2006 .

[80]  Xin-Wen Wang,et al.  Nondestructive Greenberger-Horne-Zeilinger-state analyzer , 2013, Quantum Inf. Process..

[81]  Jiaqiang Zhao,et al.  Characterization of a high-intensity three-qubit GHZ state using state tomography and Gisinʼs inequality , 2011 .

[82]  Ali Yildiz Optimal distillation of three-qubit W states , 2010 .

[83]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[84]  Bikash K. Behera,et al.  Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHZ states , 2018, Quantum Inf. Process..

[85]  Ye Cao,et al.  Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement , 2013, Quantum Inf. Process..

[86]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[87]  Controlled Quantum Teleportation Through Noisy GHZ Channel , 2010 .

[88]  P. K. Aravind Borromean Entanglement of the GHZ State , 1997 .

[89]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[90]  Xin-Wen Wang,et al.  Effect of weak measurement on entanglement distribution over noisy channels , 2015, Scientific Reports.

[91]  Werner Vogel,et al.  Numerical Construction of Multipartite Entanglement Witnesses , 2018, Physical Review X.

[92]  Jiaqiang Zhao,et al.  Tripartite entanglement and non-locality in three-qubit Greenberger–Horne–Zeilinger states with bit-flip noise , 2019, Canadian Journal of Physics.

[93]  Xin Ji,et al.  Three-party quantum secure direct communication based on GHZ states , 2006, quant-ph/0601125.

[94]  P. Alam ‘K’ , 2021, Composites Engineering.

[95]  The black hole/qubit correspondence , 2013 .

[96]  Yongmin Li,et al.  New high-efficiency source of a three-photon w state and its full characterization using quantum state tomography , 2005, International Quantum Electronics Conference, 2005..

[97]  A. Furusawa,et al.  Entanglement swapping between discrete and continuous variables. , 2014, Physical review letters.

[98]  Le Sun,et al.  Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels , 2017, Quantum Information Processing.

[99]  Hong-Yi Dai,et al.  Classical communication cost and remote preparation of the four-particle GHZ class state , 2006 .

[100]  A. T. Rezakhani,et al.  On a suggestion relating topological and quantum mechanical entanglements [rapid communication] , 2004 .

[101]  Atul Kumar,et al.  Analysing nonlocality robustness in multiqubit systems under noisy conditions and weak measurements , 2018, Quantum Information Processing.

[102]  Yu Guo,et al.  Advances in Quantum Dense Coding , 2019, Advanced Quantum Technologies.

[103]  M. Lukin,et al.  Generation and manipulation of Schrödinger cat states in Rydberg atom arrays , 2019, Science.

[104]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[105]  Ardehali Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[106]  Louis H. Kauffman,et al.  Quantum entanglement and topological entanglement , 2002 .

[107]  Eylee Jung,et al.  Tripartite entanglement in a noninertial frame , 2010, 1010.6154.

[108]  Lan Zhou,et al.  Efficient N-particle W state concentration with different parity check gates , 2012, 1204.1492.

[109]  Shang Gao,et al.  Three-party quantum secret sharing against collective noise , 2019, Quantum Inf. Process..

[110]  Arvind,et al.  Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling , 2017, 1705.03432.

[111]  Zhiwen Mo,et al.  Controlled Dense Coding with the W State , 2017 .

[112]  Timothy C. Ralph,et al.  Continuous Variable Entanglement Swapping , 1999 .

[113]  Mingqiang Bai,et al.  Cyclic joint remote state preparation in noisy environment , 2018, Quantum Inf. Process..

[114]  Y. Nie,et al.  Controlled Dense Coding Via Ghz-Class State , 2008 .

[115]  C. Villas-Boas,et al.  One-cavity scheme for atomic-state teleportation through GHZ states , 1998 .

[116]  N. Metwally,et al.  Dynamics of three-qubit systems in a noisy environment , 2016 .

[117]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[118]  Gustavo Rigolin,et al.  Fighting noise with noise in realistic quantum teleportation , 2015, 1506.03803.

[119]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[120]  Lan Zhou,et al.  Efficient entanglement concentration for electron-spin W state with the charge detection , 2012, Quantum Information Processing.

[121]  Bertúlio de Lima Bernardo,et al.  Greenberger–Horne–Zeilinger state generation with linear optical elements , 2018, Quantum Information Processing.

[122]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[123]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[124]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[125]  Yixian Yang,et al.  Joint Remote Preparation of an Arbitrary Three-Qubit State with Mixed Resources , 2010, International Journal of Theoretical Physics.

[126]  Ming-Liang Hu Robustness of Greenberger–Horne–Zeilinger and W states for teleportation in external environments , 2011 .

[127]  Zhan You-bang,et al.  Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state , 2008 .

[128]  Giuseppe Compagno,et al.  N identical particles and one particle to entangle them all , 2017, 1704.06359.

[129]  Xiang-Ping Liao,et al.  Entanglement purification and amplification of three-qubit states using two-outcome weak measurements , 2014 .

[130]  H. Weinfurter,et al.  THREE-PARTICLE ENTANGLEMENTS FROM TWO ENTANGLED PAIRS , 1997 .

[131]  Xiao-Hui Wang,et al.  Probabilistic Resumable Quantum Teleportation of a Two-Qubit Entangled State , 2019, Entropy.

[132]  Jie Song,et al.  Teleportation of an N -photon Greenberger-Horne-Zeilinger (GHZ) polarization-entangled state using linear optical elements , 2010 .

[133]  Yan Liu,et al.  Improving the Robustness of Entangled States by Basis Transformation , 2019, Entropy.

[134]  Marco T'ulio Quintino,et al.  Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant $K_G(3)$ , 2016, 1609.06114.

[135]  A. Acín,et al.  Three-qubit pure-state canonical forms , 2000, quant-ph/0009107.

[136]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[137]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[138]  J. Cereceda Three-particle entanglement versus three-particle nonlocality , 2002, quant-ph/0202139.

[139]  V. N. Gorbachev,et al.  On preparation of the entangled W-states from atomic ensembles , 2003 .

[140]  Daowen Qiu,et al.  The states of W-class as shared resources for perfect teleportation and superdense coding , 2007, quant-ph/0701030.

[141]  Hierarchies of multipartite entanglement for continuous variable states , 2014, 1409.5347.

[142]  Hyang-Tag Lim,et al.  Remote preparation of three-photon entangled states via single-photon measurement , 2016 .

[143]  Lan Zhou,et al.  Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system , 2013 .

[144]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[145]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[146]  G. J. Lapeyre,et al.  Multipartite entanglement percolation , 2009, 0910.2438.

[147]  J. Siewert,et al.  Quantifying tripartite entanglement of three-qubit generalized Werner states. , 2012, Physical review letters.

[148]  Ping Zhou,et al.  Multiparty-controlled Joint Remote Preparation of an Arbitrary m-qudit State with d-dimensional Greenberger-Horne-Zeilinger States , 2018 .

[149]  Guang-Can Guo,et al.  Experimental test of genuine multipartite nonlocality under the no-signalling principle , 2016, Scientific Reports.

[150]  Timothy C. Ralph,et al.  Experimental investigation of continuous-variable quantum teleportation , 2002, quant-ph/0207179.

[151]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[152]  Matthias Christandl,et al.  Quantum Anonymous Transmissions , 2004, ASIACRYPT.

[153]  Binayak S. Choudhury,et al.  Joint remote state preparation for two-qubit equatorial states , 2015, Quantum Inf. Process..

[154]  Teleportation of a three-particle entangled W state , 2002 .

[155]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[156]  Jinhyoung Lee,et al.  Quantum Secure Communication with W States , 2002, quant-ph/0204003.

[157]  Sae Woo Nam,et al.  Direct generation of three-photon polarization entanglement , 2014, Nature Photonics.

[158]  M. S. Tame,et al.  Experimental verification of multipartite entanglement in quantum networks , 2016, Nature Communications.

[159]  Arvind,et al.  Experimental classification of entanglement in arbitrary three-qubit pure states on an NMR quantum information processor , 2018, Physical Review A.

[160]  V. N. Gorbachev,et al.  Can the states of the W-class be suitable for teleportation , 2002, quant-ph/0203028.

[161]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[162]  M. Huber,et al.  Proving the generation of genuine multipartite entanglement in a single-neutron interferometer experiment , 2012, 1212.0972.

[163]  K. Życzkowski,et al.  A brief introduction to multipartite entanglement , 2016, 1612.07747.

[164]  Howard Mark Wiseman,et al.  Quantum nondemolition measurements for quantum information , 2006 .

[165]  Rafael Chaves,et al.  Causal hierarchy of multipartite Bell nonlocality , 2016, 1607.07666.

[166]  K. Gao,et al.  Simple scheme for generating ann-qubitWstate in cavity QED , 2006 .

[167]  J. Joo,et al.  Quantum teleportation via a W state , 2003, quant-ph/0306175.

[168]  Comment on “Teleportation of an unknown state by W states” , 2002 .

[169]  Decoherence and protection of entanglement of a system of three qubits driven by a classical Gaussian distributed fluctuating field , 2018, Physics Letters A.

[170]  B. Boulanger,et al.  Continuous-Variable Triple-Photon States Quantum Entanglement. , 2017, Physical review letters.

[171]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[172]  A. Zeilinger,et al.  Full characterization of a three-photon Greenberger-Horne-Zeilinger state using quantum state tomography. , 2004, Physical review letters.

[173]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[174]  C. Hong,et al.  Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot , 2019, Scientific Reports.

[175]  H. Takesue,et al.  Quantum teleportation over 100 km of fiber using highly-efficient superconducting nanowire single photon detectors , 2015, 1510.00476.

[176]  Feng Wang,et al.  Efficient Superdense Coding with W States , 2018 .

[177]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[178]  He-Shan Song,et al.  Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms , 2007, 0709.0802.

[179]  Y. Zhan,et al.  Scheme for Asymmetric and Deterministic Controlled Bidirectional Joint Remote State Preparation , 2018, Communications in Theoretical Physics.

[180]  J. Cirac,et al.  Reflections upon separability and distillability , 2001, quant-ph/0110081.

[181]  Hua-Qiu Liang,et al.  Effects of noises on joint remote state preparation via a GHZ-class channel , 2015, Quantum Inf. Process..

[182]  Yan Xia,et al.  Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver , 2012 .

[183]  Z. Deng Simple scheme for generating an n-qubit W state in cavity QED (4 pages) , 2006 .

[184]  S. Gasparinetti,et al.  Deterministic quantum state transfer and remote entanglement using microwave photons , 2017, Nature.

[185]  X. Shao,et al.  Adiabatic preparation of Multipartite GHZ states via Rydberg ground-state blockade. , 2019, Optics express.

[186]  Matt Visser,et al.  Quantum Blockchain using entanglement in time , 2018, Quantum Reports.

[187]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[188]  Gang Xu,et al.  Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state , 2019, Scientific Reports.

[189]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[190]  Rong-Xin Chen,et al.  Tripartite entanglement of atoms trapped in coupled cavities via quantum Zeno dynamics , 2011 .

[191]  S. Mironov Topological Entanglement and Knots , 2019, Universe.

[192]  J. Lavoie,et al.  Experimental violation of Svetlichny's inequality , 2009, 0909.0789.

[193]  Zhuo-Liang Cao,et al.  Creating photonic GHZ and W states via quantum walk , 2019, Quantum Inf. Process..

[194]  Hong-Yi Dai,et al.  Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state , 2004 .

[195]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[196]  J. W. Clark,et al.  Greenberger-Horne-Zeilinger and W entanglement witnesses for the noninteracting Fermi gas , 2008, 0805.3180.

[197]  Monireh Houshmand,et al.  Bidirectional teleportation of a pure EPR state by using GHZ states , 2016, Quantum Inf. Process..

[198]  R. Teh,et al.  Criteria for genuine N-partite continuous-variable entanglement and Einstein-Podolsky-Rosen steering , 2013, 1310.2690.

[199]  R. Chaves,et al.  Scaling laws for the decay of multiqubit entanglement. , 2008, Physical review letters.

[200]  Zhong-Xiao Man,et al.  Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states , 2007 .

[201]  Kan Wang,et al.  Probabilistic Teleportation of Arbitrary Two-Qubit Quantum State via Non-Symmetric Quantum Channel , 2018, Entropy.

[202]  Valerio Scarani,et al.  State complexity and quantum computation , 2015, 1503.04017.

[203]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[204]  Mohammad Kazem Tavassoly,et al.  Generation of some entangled states of the cavity field , 2015, Quantum Inf. Process..

[205]  Akihisa Tomita,et al.  Teleportation of an unknown state by W state , 2002 .

[206]  Mei Zhang,et al.  Self-assisted complete analysis of three-photon hyperentangled Greenberger–Horne–Zeilinger states with nitrogen-vacancy centers in microcavities , 2018, Quantum Inf. Process..

[207]  M. Duff,et al.  The black-hole/qubit correspondence: an up-to-date review , 2012, 1206.3166.

[208]  Arvind,et al.  Experimentally identifying the entanglement class of pure tripartite states , 2018, Quantum Information Processing.

[209]  M. Martinelli,et al.  Three-Color Entanglement , 2009, Science.

[210]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[211]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[212]  Binayak S. Choudhury,et al.  Simultaneous perfect teleportation of three 2-qubit states , 2017, Quantum Inf. Process..

[213]  Ping Yu,et al.  Necessary and sufficient fully separable criterion and entanglement of three-qubit Greenberger–Horne–Zeilinger diagonal states , 2015, Quantum Inf. Process..

[214]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[215]  F. Illuminati,et al.  Entanglement in continuous-variable systems: recent advances and current perspectives , 2007, quant-ph/0701221.

[216]  Stefano Pironio,et al.  Definitions of multipartite nonlocality , 2011, 1112.2626.

[217]  Hua-Qiu Liang,et al.  Quantum teleportation with partially entangled states via noisy channels , 2013, Quantum Inf. Process..

[218]  Chuan Wang,et al.  Efficient W-state entanglement concentration using quantum-dot and optical microcavities , 2012, 1206.5664.

[219]  Jian-Wei Pan,et al.  Quantum Teleportation in High Dimensions. , 2019, Physical review letters.

[220]  M. Lewenstein,et al.  Classification of mixed three-qubit states. , 2001, Physical review letters.

[221]  Girish S. Agarwal,et al.  Entanglement of polarization and orbital angular momentum , 2015 .

[222]  Christian Kurtsiefer,et al.  Experimental realization of a three-qubit entangled W state. , 2004, Physical review letters.

[223]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[224]  Binayak S. Choudhury,et al.  Remote Preparation of Some Three Particle Entangled States Under Divided Information , 2018, International Journal of Theoretical Physics.

[225]  Guang-Can Guo,et al.  General form of genuine multipartite entanglement quantum channels for teleportation , 2006 .

[226]  M. Koashi,et al.  Polarization-entangled W state using parametric down-conversion , 2002, quant-ph/0208162.

[227]  S. Fei,et al.  Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices , 2017, Scientific Reports.

[228]  M. Shamirzaie,et al.  Quantum teleportation via noisy bipartite and tripartite accelerating quantum states: beyond the single mode approximation , 2017 .

[229]  Hua-Qiu Liang,et al.  Remote state preparation via a GHZ-class state in noisy environments , 2011 .

[230]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[231]  S. Salimi,et al.  Quantum discord evolution of three-qubit states under noisy channels , 2012, 1204.1217.

[232]  G Leuchs,et al.  Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes. , 2011, Physical review letters.

[233]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[234]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[235]  S. Bose,et al.  PURIFICATION VIA ENTANGLEMENT SWAPPING AND CONSERVED ENTANGLEMENT , 1998, quant-ph/9812013.

[236]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[237]  Yi‐Hao Kang,et al.  Effective scheme for preparation of a spin-qubit Greenberger–Horne–Zeilinger state and W state in a quantum-dot-microcavity system , 2015 .

[238]  F. Illuminati,et al.  Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence , 2005, quant-ph/0512124.

[239]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[240]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[241]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[242]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[243]  Qi‐Cheng Wu,et al.  Fast generation of W states of superconducting qubits with multiple Schrödinger dynamics , 2016, Scientific Reports.