Technology for III‐N heterogeneous mixed‐signal electronics

III-N devices are suitable for high power RF/microwave amplifier, high temperature electronics, and power switches applications, and the peripheral mixed-signal electronics with sensing, protection, and control functions could provide optimized performance, increased functionality, and enhanced reliability. This paper addresses the technology to discuss the technology options of implementing III-N mixed-signal circuits, and then reviews the recent progress in the expansion of design library, based on monolithically integrated enhancement/depletion (E/D)-mode AlGaN/GaN HEMTs on GaN-on-silicon substrates. An integrated GaN proportional-to-absolute-temperature (PTAT) voltage source.

[1]  Yong Cai,et al.  Monolithically Integrated Enhancement/Depletion-Mode AlGaN/GaN HEMT Inverters and Ring Oscillators Using$hboxCF_4$Plasma Treatment , 2006, IEEE Transactions on Electron Devices.

[2]  Xiaosen Liu,et al.  GaN smart power IC technology , 2010 .

[3]  C. Meliani,et al.  Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking , 2012, IEEE Electron Device Letters.

[4]  Cheng Liu,et al.  1.4-kV AlGaN/GaN HEMTs on a GaN-on-SOI Platform , 2013, IEEE Electron Device Letters.

[5]  H. Ishida,et al.  Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation , 2007, IEEE Transactions on Electron Devices.

[6]  Xiaosen Liu,et al.  GaN Single-Polarity Power Supply Bootstrapped Comparator for High-Temperature Electronics , 2011, IEEE Electron Device Letters.

[7]  D. Pavlidis,et al.  Improved quality GaN by growth on compliant silicon-on-insulator substrates using metalorganic chemical vapor deposition , 1998 .

[8]  Zhenchuan Yang,et al.  High-Temperature Operation of AlGaN/GaN HEMTs Direct-Coupled FET Logic (DCFL) Integrated Circuits , 2007, IEEE Electron Device Letters.

[9]  King-Yuen Wong,et al.  Single-Chip Boost Converter Using Monolithically Integrated AlGaN/GaN Lateral Field-Effect Rectifier and Normally Off HEMT , 2009, IEEE Electron Device Letters.

[10]  King-Yuen Wong,et al.  Integrated Voltage Reference Generator for GaN Smart Power Chip Technology , 2010, IEEE Transactions on Electron Devices.

[11]  U. Mishra,et al.  AlGaN/GaN HEMTs-an overview of device operation and applications , 2002, Proc. IEEE.

[12]  Wei Huang,et al.  High-performance AlGaN∕GaN lateral field-effect rectifiers compatible with high electron mobility transistors , 2008 .

[13]  Zhenchuan Yang,et al.  Fabrication of Large-Area Suspended MEMS Structures Using GaN-on-Si Platform , 2009, IEEE Electron Device Letters.

[14]  S. Isomae Stress in silicon at Si3N4/SiO2 film edges and viscoelastic behavior of SiO2 films , 1985 .

[15]  W. E. Hoke,et al.  Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit , 2012 .

[16]  Kevin J. Chen,et al.  Enhancement‐mode AlGaN/GaN HEMT and MIS‐HEMT technology , 2011 .

[17]  Francisco Serra-Graells,et al.  Sub-1-V CMOS proportional-to-absolute temperature references , 2003, IEEE J. Solid State Circuits.

[18]  T. Palacios,et al.  Seamless On-Wafer Integration of Si(100) MOSFETs and GaN HEMTs , 2009, IEEE Electron Device Letters.