Climatological distribution of dissolved inorganic nutrients in the western Mediterranean Sea (1981–2017)

Abstract. The Western MEDiterranean Sea BioGeochemical Climatology (BGC-WMED, https://doi.org/10.1594/PANGAEA.930447) (Belgacem et al., 2021) presented here is a product derived from quality-controlled in situ observations. Annual mean gridded nutrient fields for the period 1981–2017 and its sub-periods 1981–2004 and 2005–2017 on a horizontal 1/4∘ × 1/4∘ grid have been produced. The biogeochemical climatology is built on 19 depth levels and for the dissolved inorganic nutrients nitrate, phosphate and orthosilicate. To generate smooth and homogeneous interpolated fields, the method of the variational inverse model (VIM) was applied. A sensitivity analysis was carried out to assess the comparability of the data product with the observational data. The BGC-WMED was then compared to other available data products, i.e., the MedBFM biogeochemical reanalysis of the Mediterranean Sea and the World Ocean Atlas 2018 (WOA18) (its biogeochemical part). The new product reproduces common features with more detailed patterns and agrees with previous records. This suggests a good reference for the region and for the scientific community for the understanding of inorganic nutrient variability in the western Mediterranean Sea, in space and in time, but our new climatology can also be used to validate numerical simulations, making it a reference data product.

[1]  A. Barth,et al.  Climatological distribution of dissolved inorganic nutrients in the Western Mediterranean Sea (1981-2017) , 2021 .

[2]  K. Trenberth,et al.  Upper Ocean Temperatures Hit Record High in 2020 , 2021, Advances in Atmospheric Sciences.

[3]  R. Feely,et al.  An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020 , 2020, Earth System Science Data.

[4]  T. Tanhua,et al.  Recent Changes in Deep Ventilation of the Mediterranean Sea; Evidence From Long-Term Transient Tracer Observations , 2020, Frontiers in Marine Science.

[5]  F. D’Ortenzio,et al.  Biogeochemical Argo: The Test Case of the NAOS Mediterranean Array , 2020, Frontiers in Marine Science.

[6]  A. Ribotti,et al.  Dissolved inorganic nutrients in the western Mediterranean Sea (2004–2017) , 2019, Earth System Science Data.

[7]  Quillon Harpham,et al.  The European Marine Observation and Data Network (EMODnet): Visions and Roles of the Gateway to Marine Data in Europe , 2019, Front. Mar. Sci..

[8]  K. Schroeder,et al.  Along-Path Evolution of Biogeochemical and Carbonate System Properties in the Intermediate Water of the Western Mediterranean , 2019, Frontiers in Marine Science.

[9]  P. M. Salgado-Hernanz,et al.  Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing , 2019, Remote Sensing of Environment.

[10]  J. Beckers,et al.  Mediterranean Sea Hydrographic Atlas: towards optimal data analysis by including time-dependent statistical parameters , 2018, Earth System Science Data.

[11]  A. Oschlies,et al.  Ocean ventilation and deoxygenation in a warming world: introduction and overview , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  R. Balbín,et al.  Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project , 2017 .

[13]  M. Rodilla,et al.  Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea) , 2017 .

[14]  K. Schroeder,et al.  Rapid response to climate change in a marginal sea , 2017, Scientific Reports.

[15]  B. Herut,et al.  Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea , 2017 .

[16]  P. Testor,et al.  HyMeX-SOP2: The field campaign dedicated to dense water formation in the northwestern Mediterranean , 2016 .

[17]  Sylvain Watelet,et al.  A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2 , 2016 .

[18]  Masao Ishii,et al.  The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean , 2016 .

[19]  D. Conley,et al.  The continental Si cycle and its impact on the ocean Si isotope budget , 2016 .

[20]  K. Schroeder,et al.  Abrupt climate shift in the Western Mediterranean Sea , 2016, Scientific Reports.

[21]  Cosimo Solidoro,et al.  Spatial variability of phosphate and nitrate in the Mediterranean Sea: A modeling approach , 2016 .

[22]  K. Schroeder,et al.  Mediterranean Sea Ship-based Hydrographic Investigations Program (Med-SHIP) , 2015 .

[23]  Fabrizio D'Ortenzio,et al.  On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin scale and seasonal approach , 2015 .

[24]  F. D’Ortenzio,et al.  Temporal variability of nutrient concentrations in the northwestern Mediterranean sea (DYFAMED time-series station) , 2015 .

[25]  M. Krom,et al.  A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea : Part 1. Model development, initialization and sensitivity , 2014 .

[26]  Alessandra Giorgetti,et al.  Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea , 2014 .

[27]  M. Krom,et al.  Silica cycling in the ultra-oligotrophic eastern Mediterranean Sea , 2014 .

[28]  D. Hainbucher,et al.  The Eastern Mediterranean Transient , 2014 .

[29]  J. Beckers,et al.  Untangling spatial and temporal trends in the variability of the Black Sea Cold Intermediate Layer and mixed Layer Depth using the DIVA detrending procedure , 2014, Ocean Dynamics.

[30]  T. Tanhua,et al.  Ventilation of the Mediterranean Sea constrained by multiple transient tracer measurements , 2013 .

[31]  Katrin Schroeder,et al.  The Mediterranean Sea system: a review and an introduction to the special issue , 2013 .

[32]  K. Arrigo,et al.  Processes and patterns of oceanic nutrient limitation , 2013 .

[33]  J. Beckers,et al.  divand-1.0: n -dimensional variational data analysis for ocean observations , 2013 .

[34]  P. Testor,et al.  Interaction of dense shelf water cascading and open‐sea convection in the northwestern Mediterranean during winter 2012 , 2013 .

[35]  I. Berman‐Frank,et al.  Uncoupling between dinitrogen fixation and primary productivity in the eastern Mediterranean Sea , 2013 .

[36]  J. Beckers,et al.  Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis (Diva) , 2012 .

[37]  Anna Teruzzi,et al.  Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach , 2011 .

[38]  L. Prieur,et al.  Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea , 2010 .

[39]  B. Quéguiner,et al.  Deep silicon maxima in the stratified oligotrophic Mediterranean Sea , 2010 .

[40]  M. Krom,et al.  Why is the Eastern Mediterranean phosphorus limited , 2010 .

[41]  K. Schroeder,et al.  Biogeochemical tracers and fluxes in the Western Mediterranean Sea, spring 2005 , 2010 .

[42]  Wolfgang Ludwig,et al.  River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? , 2009 .

[43]  F. D’Ortenzio,et al.  On the trophic regimes of the Mediterranean Sea: a satellite analysis , 2008 .

[44]  B. Klein,et al.  Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s , 2007 .

[45]  R. Losno,et al.  Atmospheric input of dissolved inorganic phosphorus and silicon to the coastal northwestern Mediterranean Sea: Fluxes, variability and possible impact on phytoplankton dynamics , 2005 .

[46]  Paul Poli,et al.  Diagnosis of observation, background and analysis‐error statistics in observation space , 2005 .

[47]  F. Guerrero,et al.  Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea, (W-Mediterranean) , 2005 .

[48]  M. Krom,et al.  Nutrient budget for the Eastern Mediterranean: Implications for phosphorus limitation , 2004 .

[49]  M. Burca,et al.  Physical and biochemical averaged vertical profiles in the Mediterranean regions: an important tool to trace the climatology of water masses and to validate incoming data from operational oceanography , 2004 .

[50]  N. Garcia,et al.  Early spring phosphorus limitation of primary productivity in a NW Mediterranean coastal zone (Gulf of Lions) , 2001 .

[51]  Dimitrios Georgopoulos,et al.  Recent Changes in Eastern Mediterranean Deep Waters , 1996, Science.

[52]  J. Toggweiler,et al.  A new model for the role of the oceans in determining atmospheric PCO2 , 1984, Nature.

[53]  R. Balbín,et al.  Average nutrient and chlorophyll distributions in the western Mediterranean: RADMED project , 2019, Oceanologia.

[54]  M. Follows,et al.  Physical Transport of Nutrients and the Maintenance of Biological Production , 2003 .

[55]  Medoc Group Observation of Formation of Deep Water in the Mediterranean Sea, 1969 , 1970, Nature.