Layered Na‐Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P‐ and O‐Type Phases

Herein, the synthesis of new quaternary layered Na‐based oxides of the type NaxMnyNizFe0.1Mg0.1O2 (0.67≤ x ≤ 1.0; 0.5≤ y ≤ 0.7; 0.1≤ z ≤ 0.3) is described. The synthesis can be tuned to obtain P2‐ and O3‐type as well as mixed P‐/O‐type phases as demonstrated by structural, morphological, and electrochemical properties characterization. Although all materials show good electrochemical performance, the simultaneous presence of the P‐ and O‐type phases is found to have a synergetic effect resulting in outstanding performance of the mixed phase material as a sodium‐ion cathode. The mixed P3/P2/O3‐type material, having an average elemental composition of Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2, overcomes the specific drawbacks associated with the P2‐ and O3‐type materials, allowing the outstanding electrochemical performance. In detail, the mixed phase material is able to deliver specific discharge capacities of up to 155 mAh g−1 (18 mA g−1) in the potential range of 2.0–4.3 V. In the narrower potential range of 2.5–4.3 V the material exhibits high average discharge potential (3.4 V versus Na/Na+), exceptional average coulombic efficiencies (>99.9%), and extraordinary capacity retention (90.2% after 601 cycles). The unexplored class of P‐/O‐type mixed phases introduces new perspectives for the development of layered positive electrode materials and powerful Na‐ion batteries.

[1]  S. Passerini,et al.  Mg-doping for improved long-term cyclability of layered Na-ion cathode materials - The example of P2-type Na x Mg 0.11 Mn 0.89 O 2 , 2015 .

[2]  Masayoshi Ishida,et al.  A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. , 2015, Angewandte Chemie.

[3]  M. J. McDonald,et al.  P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries , 2015 .

[4]  Robert W. Black,et al.  Uptake of CO2 in Layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of Carbonate Anions , 2015 .

[5]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[6]  Dipan Kundu,et al.  Natriumionenbatterien für die elektrochemische Energiespeicherung , 2015 .

[7]  Jusef Hassoun,et al.  A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. , 2015, ACS applied materials & interfaces.

[8]  Jun Lu,et al.  Layered P2/O3 Intergrowth Cathode: Toward High Power Na‐Ion Batteries , 2014 .

[9]  S. Passerini,et al.  P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance , 2014 .

[10]  B. Scrosati,et al.  High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium‐Ion Batteries , 2014 .

[11]  Chun-hua Chen,et al.  Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries , 2014 .

[12]  Gerbrand Ceder,et al.  Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides , 2014 .

[13]  Shinichi Komaba,et al.  Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries , 2014, Science and technology of advanced materials.

[14]  S. Passerini,et al.  Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material , 2014 .

[15]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[16]  D. Bresser,et al.  Anatase TiO2 nanoparticles for high power sodium-ion anodes , 2014 .

[17]  M. Armand,et al.  Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries , 2014 .

[18]  S. Passerini,et al.  Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte , 2014 .

[19]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[20]  M. Winter,et al.  P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries , 2013 .

[21]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[22]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[23]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[24]  J. Tu,et al.  Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method , 2013 .

[25]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[26]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[27]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[28]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[29]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[30]  M. Armand,et al.  Building better batteries , 2008, Nature.

[31]  R. Holze,et al.  Cathode materials modified by surface coating for lithium ion batteries , 2006 .

[32]  M. Mokhtar,et al.  Electrical properties of pure and Li2O-doped NiO/MgO system , 2004 .

[33]  J. Dahn,et al.  Can All the Lithium be Removed from T 2 ­ Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 ? , 2001 .

[34]  J. Dahn,et al.  O 2‐Type Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries II. Structure, Composition, and Properties , 2000 .

[35]  Ho-jin Kweon,et al.  Modification of LixNi1−yCoyO2 by applying a surface coating of MgO , 2000 .

[36]  J. Dahn,et al.  Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange , 1999 .

[37]  R. Huggins Solid State Ionics , 1989 .

[38]  F. D. Bergevin,et al.  Lattice parameter, microstrains and non-stoichiometry in NiO. Comparison between mosaic microcrystals and quasi-perfect single microcrystals , 1979 .

[39]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[40]  A. Manthiram,et al.  Neutron Diffraction and Electrochemical Studies of Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 Cathodes for Sodium-Ion Batteries , 2014 .

[41]  R. Kataoka,et al.  Development of High Capacity Cathode Material for Sodium Ion Batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2 , 2013 .

[42]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[43]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[44]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.