Applying relation algebra and RelView to solve problems on orders and lattices

Relation algebra is well suited for dealing with many problems on ordered sets. Introducing lattices via order relations, this suggests to apply it and tools for its mechanization for lattice-theoretical problems, too. We combine relation algebra and the BDD-based specific purpose Computer Algebra system RelView to solve some algorithmic problems on orders and lattices and to visualize their solutions.

[1]  Rudolf Berghammer Computation of Cut Completions and Concept Lattices Using Relational Algebra and RelView , 2004 .

[2]  Rudolf Berghammer,et al.  Exact Computation of Minimum Feedback Vertex Sets with Relational Algebra , 2006, Fundam. Informaticae.

[3]  Rudolf Berghammer,et al.  Relational Approach to Boolean Logic Problems , 2005, RelMiCS.

[4]  R. Schmidt Subgroup Lattices of Groups , 1994 .

[5]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[6]  Gunther Schmidt,et al.  Relations and Graphs , 1993, EATCS Monographs on Theoretical Computer Science.

[7]  Frank Neumann,et al.  RelView - An OBDD-Based Computer Algebra System for Relations , 2005, CASC.

[8]  R. Dedekind,et al.  Ueber die von drei Moduln erzeugte Dualgruppe , 1900 .

[9]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[10]  Hans Hermes Einführung in die Verbandstheorie , 1955 .

[11]  Gunther Schmidt,et al.  Discrete ordering relations , 1983, Discret. Math..

[12]  Barbara Leoniuk ROBDD-basierte Implementierung von Relationen und relationalen Operationen mit Anwendungen , 2001 .

[13]  William C. Nemitz Semi-Boolean lattices , 1969, Notre Dame J. Formal Log..

[14]  Gunther Schmidt,et al.  Relations and Graphs: Discrete Mathematics for Computer Scientists , 1993 .

[15]  Rudolf Berghammer,et al.  Relational depth-first-search with applications , 2001, Inf. Sci..

[16]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[17]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[18]  L. Santocanale,et al.  Free μ-lattices , 2000 .

[19]  Rudolf Berghammer Combining Relational Calculus and the Dijkstra-Gries Method for Deriving Relational Programs , 1999, Inf. Sci..

[20]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[21]  Frank Ruskey,et al.  Generating Linear Extensions Fast , 1994, SIAM J. Comput..

[22]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[23]  O. Ore Structures and group theory. II , 1937 .

[24]  Edsger W. Dijkstra,et al.  Predicate Calculus and Program Semantics , 1989, Texts and Monographs in Computer Science.

[25]  D. J. Guan,et al.  A Dynamic Fault-Tolerant Message Routing Algorithm for Double-Loop Networks , 1999, Inf. Process. Lett..

[26]  R. Tennant Algebra , 1941, Nature.

[27]  Ralph Freese,et al.  Automated Lattice Drawing , 2004, ICFCA.

[28]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[29]  Ulf Milanese Zur Implementierung eines ROBDD-basierten Systems für die Manipulation und Visualisierung von Relationen , 2003 .

[30]  Ralf Behnke,et al.  RELVIEW - A System for Calculating With Relations and Relational Programming , 1998, FASE.

[31]  Rudolf Berghammer,et al.  Implementation of Relational Algebra Using Binary Decision Diagrams , 2001, RelMiCS.

[32]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[33]  Roger D. Maddux,et al.  Relation Algebras , 1997, Relational Methods in Computer Science.

[34]  Alexander Hulpke Computing normal subgroups , 1998, ISSAC '98.

[35]  A. B. Kahn,et al.  Topological sorting of large networks , 1962, CACM.

[36]  Rudolf Berghammer,et al.  Deriving relational programs for computing kernels by reconstructing a proof of Richardson's theorem , 2000, Sci. Comput. Program..

[37]  Gunther Schmidt,et al.  Algebraic Visualization of Relations Using RelView , 2007, CASC.