Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh

Abstract A method of combining 1-d and 2-d structural finite elements to capture the fundamental mechanical properties of engineering fabrics subject to finite strains is introduced. A mutually constrained pantographic beam & membrane mesh is presented and simple homogenisation theory is developed to relate the macro-scale properties of the mesh to the properties of the elements within the mesh. The theory shows that each of the macro-scale properties of the mesh can be independently controlled. An investigation into the performance of the technique is conducted using tensile, cantilever bending and uniaxial bias extension shear simulations. The simulations are first used to verify the accuracy of the homogenisation theory and then used to demonstrate the ability of the modelling approach in accurately predicting the shear force, shear kinematics and out-of-plane wrinkling behaviour of engineering fabrics.

[1]  I. Verpoest,et al.  Carbon composites based on multiaxial multiply stitched preforms. Part 2. KES-F characterisation of the deformability of the preforms at low loads , 2003 .

[2]  Francesco dell’Isola,et al.  A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics , 2015 .

[3]  S. Sharma,et al.  A simplified finite element model for draping of woven material , 2004 .

[4]  Gilles Hivet,et al.  A contribution to the analysis of the intrinsic shear behavior of fabrics , 2011 .

[5]  Noboru Kikuchi,et al.  Numerical analysis and optimal design of composite thermoforming process , 1999 .

[6]  P. Harrison,et al.  Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry , 2013 .

[7]  K. Chung,et al.  Analysis of flexible bending behavior of woven preform using non-orthogonal constitutive equation , 2005 .

[8]  Emmanuelle Vidal-Salle,et al.  Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses , 2011 .

[9]  Remko Akkerman,et al.  Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials , 2008 .

[10]  Mpf Sutcliffe,et al.  A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites , 2007 .

[11]  Pierre Badel,et al.  Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming , 2009 .

[12]  Helmut E. Bez,et al.  A simple finite element model for cloth drape simulation , 1996 .

[13]  James A. Sherwood,et al.  Digital Method of Analyzing the Bending Stiffness of Non‐Crimp Fabrics , 2011 .

[14]  Yan Chen,et al.  A New Computerized Data Acquisition and Analysis System for KES-FB Instruments , 2001 .

[15]  Jean Louis Billoet,et al.  Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics , 2001 .

[16]  V. S. Thammandra,et al.  Influence of uniaxial and biaxial tension on meso-scale geometry and strain fields in a woven composite , 2007 .

[17]  F. T. P. B.Sc. 26—THE “HANDLE” OF CLOTH AS A MEASURABLE QUANTITY , 1930 .

[18]  Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system , 2015 .

[19]  Anthony K. Pickett,et al.  An explicit finite element solution for the forming prediction of continuous fibre-reinforced thermoplastic sheets , 1995 .

[20]  Andrew C. Long,et al.  Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation , 2005 .

[21]  Andrew C. Long,et al.  Normalization of Shear Test Data for Rate-independent Compressible Fabrics , 2008 .

[22]  Kevin D Potter,et al.  Bias extension measurements on cross-plied unidirectional prepreg , 2002 .

[23]  Andrew C. Long,et al.  Characterising and modelling variability of tow orientation in engineering fabrics and textile composites , 2012 .

[24]  A. Long,et al.  Rate dependent modelling of the forming behaviour of viscous textile composites , 2011 .

[25]  Anthony K. Pickett,et al.  Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX , 1998 .

[26]  Ivan Giorgio,et al.  Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements , 2015 .

[27]  A predictive approach to simulating the forming of viscous textile composite sheet , 2005 .

[28]  S. Allaoui,et al.  Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark results , 2014 .

[29]  Kwansoo Chung,et al.  Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites , 2002 .

[30]  R. Byron Pipes,et al.  Finite element analysis of composite sheet-forming process , 1991 .

[31]  Adrien Charmetant,et al.  Hyperelastic model for large deformation analyses of 3D interlock composite preforms , 2012 .

[32]  Philip G. Harrison,et al.  Corrigendum to: Evaluation of normalisation methods for uniaxial bias extension tests on engineering fabrics [Compos. Part A: Appl. Sci. Manuf. 67 (2014) 61–69] , 2015 .

[33]  Francesco dell’Isola,et al.  Elastic pantographic 2 D lattices : a numerical analysis on the static response and wave propagation , 2015 .

[34]  Bernard Haussy,et al.  Discrete models of woven structures. Macroscopic approach , 2007 .

[35]  P. Boisse,et al.  Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements , 2001 .

[36]  Yiu-Wing Mai,et al.  Intra-ply shear locking in finite element analyses of woven fabric forming processes , 2006 .

[37]  Woong‐Ryeol Yu,et al.  A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation , 2013 .

[38]  Andrew C. Long,et al.  Predictive modelling for optimization of textile composite forming , 2007 .

[39]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[40]  D. Soulat,et al.  Experimental Study of Bending Behaviour of Reinforcements , 2010 .

[41]  Philippe Boisse,et al.  Finite element simulations of textile composite forming including the biaxial fabric behaviour , 1997 .

[42]  Gilles Hivet,et al.  Analyses of fabric tensile behaviour: determination of the biaxial tension–strain surfaces and their use in forming simulations , 2001 .

[43]  Numerical Tools for Composite Woven Fabric Preforming , 2013 .

[44]  Ronald C. Averill,et al.  Finite element analysis of textile composite preform stamping , 2001 .

[45]  Raymond H. Plaut,et al.  Formulas to determine fabric bending rigidity from simple tests , 2015 .

[46]  Philip G. Harrison,et al.  Corrigendum to ‘Evaluation of normalisation methods for uniaxial bias extension tests on engineering fabrics’ , 2016 .

[47]  P. Potluri,et al.  Characterising the shear–tension coupling and wrinkling behaviour of woven engineering fabrics , 2012 .

[48]  Timothy A. Philpot Mechanics of Materials: An Integrated Learning System , 2008 .

[49]  Kevin D Potter,et al.  The use of kinematic drape modelling to inform the hand lay-up of complex composite components using woven reinforcements , 2006 .

[50]  M. Åkermo,et al.  In-plane deformation of multi-layered unidirectional thermoset prepreg – Modelling and experimental verification , 2014 .

[51]  Francesco dell’Isola,et al.  Modelling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory , 2013 .

[52]  Philippe Boisse,et al.  Locking in simulation of composite reinforcement deformations. Analysis and treatment , 2013 .

[53]  Joris Degrieck,et al.  Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388) , 2014 .

[54]  P. Boisse,et al.  Numerical modelling of forming of a non-crimp 3D orthogonal weave E-glass composite reinforcement , 2015 .

[55]  L. T. Harper,et al.  Formability optimisation of fabric preforms by controlling material draw-in through in-plane constraints , 2015 .

[56]  P. Boisse,et al.  Meso modelling for composite preform shaping – Simulation of the loss of cohesion of the woven fibre network , 2013 .