Solution of the Fokker–Planck equation in a wind turbine array boundary layer

Abstract Hot-wire velocity signals from a model wind turbine array boundary layer flow wind tunnel experiment are analyzed. In confirming Markovian properties, a description of the evolution of the probability density function of velocity increments via the Fokker–Planck equation is attained. Solution of the Fokker–Planck equation is possible due to the direct computation of the drift and diffusion coefficients from the experimental measurement data which were acquired within the turbine canopy. A good agreement is observed in the probability density functions between the experimental data and numerical solutions resulting from the Fokker–Planck equation, especially in the far-wake region. The results serve as a tool for improved estimation of wind velocity within the array and provide evidence that the evolution of such a complex and turbulent flow is also governed by a Fokker–Planck equation at certain scales.

[1]  Vincenzo Palleschi,et al.  Numerical solution of the Fokker-Planck equation: A fast and accurate algorithm , 1990 .

[2]  Raúl Bayoán Cal,et al.  Identification of Markov process within a wind turbine array boundary layer , 2014 .

[3]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[4]  Joachim Peinke,et al.  The Markov Einstein coherence length—a new meaning for the Taylor length in turbulence , 2006 .

[5]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[6]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[7]  H Kantz,et al.  Indispensable finite time corrections for Fokker-Planck equations from time series data. , 2001, Physical review letters.

[8]  J. Peinke,et al.  Statistical properties of a turbulent cascade , 1997 .

[9]  C. Meneveau,et al.  Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer , 2009 .

[10]  S. Saddoughi Local isotropy in complex turbulent boundary layers at high Reynolds number , 1997, Journal of Fluid Mechanics.

[11]  G. Taylor The Spectrum of Turbulence , 1938 .

[12]  J. Sørensen,et al.  Wind turbine wake aerodynamics , 2003 .

[13]  J. Peinke,et al.  Towards a stochastic multi-point description of turbulence , 2010 .

[14]  Joachim Peinke,et al.  Experimental indications for Markov properties of small-scale turbulence , 2001, Journal of Fluid Mechanics.

[15]  P. Marcq,et al.  A Langevin equation for turbulent velocity increments , 2001 .

[16]  Rudolf Friedrich,et al.  Uniform Statistical Description of the Transition between Near and Far Field Turbulence in a Wake Flow , 1999 .

[17]  Julio Hernández,et al.  Survey of modelling methods for wind turbine wakes and wind farms , 1999 .

[18]  J. Peinke,et al.  Description of a Turbulent Cascade by a Fokker-Planck Equation , 1997 .

[19]  Murat Tutkun,et al.  Markovian properties of passive scalar increments in grid-generated turbulence , 2004 .

[20]  Z. Warhaft,et al.  The anisotropy of the small scale structure in high Reynolds number (Rλ∼1000) turbulent shear flow , 2000 .

[21]  P. Mestayer Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer , 1982, Journal of Fluid Mechanics.

[22]  Charles Meneveau,et al.  Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer , 2012 .